Vertical InAs/InGaAs Heterostructure Metal-Oxide-Semiconductor Field-Effect Transistors on Si.

III-V compound semiconductors offer a path to continue Moore's law due to their excellent electron transport properties. One major challenge, integrating III-V's on Si, can be addressed by using vapor-liquid-solid grown vertical nanowires. InAs is an attractive material due to its superior mobility, although InAs metal-oxide-semiconductor field-effect transistors (MOSFETs) typically suffer from band-to-band tunneling caused by its narrow band gap, which increases the off-current and therefore the power consumption. In this work, we present vertical heterostructure InAs/InGaAs nanowire MOSFETs with low off-currents provided by the wider band gap material on the drain side suppressing band-to-band tunneling. We demonstrate vertical III-V MOSFETs achieving off-current below 1 nA/μm while still maintaining on-performance comparable to InAs MOSFETs; therefore, this approach opens a path to address not only high-performance applications but also Internet-of-Things applications that require low off-state current levels.

[1]  A. Schenk,et al.  Individual Defects in InAs/InGaAsSb/GaSb Nanowire Tunnel Field-Effect Transistors Operating below 60 mV/decade. , 2017, Nano letters.

[2]  J. Svensson,et al.  Electrical Characterization and Modeling of Gate-Last Vertical InAs Nanowire MOSFETs on Si , 2016, IEEE Electron Device Letters.

[3]  Dimitri A. Antoniadis,et al.  Nanometer-Scale III-V MOSFETs , 2016, IEEE Journal of the Electron Devices Society.

[4]  Y. Yeo,et al.  High-Performance InAs Gate-All-Around Nanowire MOSFETs on 300 mm Si Substrates , 2016, IEEE Journal of the Electron Devices Society.

[5]  Jerry Tersoff,et al.  Interface dynamics and crystal phase switching in GaAs nanowires , 2016, Nature.

[6]  J. Svensson,et al.  III-V Nanowire Complementary Metal-Oxide Semiconductor Transistors Monolithically Integrated on Si. , 2015, Nano letters.

[7]  E. Lind,et al.  InP Drain Engineering in Asymmetric InGaAs/InP MOSFETs , 2015, IEEE Transactions on Electron Devices.

[8]  Erik Lind,et al.  III-V Heterostructure Nanowire Tunnel FETs , 2015, IEEE Journal of the Electron Devices Society.

[9]  Lars-Erik Wernersson,et al.  III–V compound semiconductor transistors—from planar to nanowire structures , 2014 .

[10]  Erik Lind,et al.  Extrinsic and Intrinsic Performance of Vertical InAs Nanowire MOSFETs on Si Substrates , 2013, IEEE Transactions on Electron Devices.

[11]  E. Lind,et al.  High-Performance InAs Nanowire MOSFETs , 2012, IEEE Electron Device Letters.

[12]  K. Dick,et al.  Recent advances in semiconductor nanowire heterostructures , 2011 .

[13]  Lars-Erik Wernersson,et al.  High quality InAs and GaSb thin layers grown on Si (111) , 2011 .

[14]  Qin Zhang,et al.  Low-Voltage Tunnel Transistors for Beyond CMOS Logic , 2010, Proceedings of the IEEE.

[15]  E. Lind,et al.  Temperature dependent properties of InSb and InAs nanowire field-effect transistors , 2010 .

[16]  S. Fortuna,et al.  Metal-catalyzed semiconductor nanowires: a review on the control of growth directions , 2010 .

[17]  Yong Ding,et al.  Direct heteroepitaxy of vertical InAs nanowires on Si substrates for broad band photovoltaics and photodetection. , 2009, Nano letters.

[18]  L.-E. Wernersson,et al.  Vertical Enhancement-Mode InAs Nanowire Field-Effect Transistor With 50-nm Wrap Gate , 2008, IEEE Electron Device Letters.

[19]  P. K. Basu,et al.  Empirical expressions for the alloy composition and temperature dependence of the band gap and intrinsic carrier density in GaxIn1-xAs , 1991 .