Surface simplification inside a tolerance volume

An improvement of a method for measuring distance to target using transmitted and reflected frequency-modulated continuous waves is provided. A low frequency wave produced by mixing a transmitted wave and a wave reflected from the target is separated into frequency components such as a Doppler signal component, a fundamental wave component and its harmonic components. Then, Doppler signals are obtained from the fundamental wave and harmonic components. The ratio in intensity between at least two Doppler signals is calculated to measure the distance to the target. Since the phase of Doppler signal is reversed depending upon whether the target is moving toward or away from the distance measuring apparatus, the direction of the relative movement between the target and the apparatus may be detected. Furthermore, the relative speed between the target and the distance measuring apparatus may be detected from the frequency of each Doppler signal. When the ratio of the distance to the target to the relative speed reaches a predetermined value, a command signal to actuate a device is produced.

[1]  James H. Clark,et al.  Hierarchical geometric models for visible surface algorithms , 1976, CACM.

[2]  James J. Little,et al.  Automatic extraction of Irregular Network digital terrain models , 1979, SIGGRAPH.

[3]  Gene H. Golub,et al.  Matrix computations , 1983 .

[4]  Leila De Floriani,et al.  Delaunay-based representation of surfaces defined over arbitrarily shaped domains , 1985, Comput. Vis. Graph. Image Process..

[5]  Francis J. M. Schmitt,et al.  An adaptive subdivision method for surface-fitting from sampled data , 1986, SIGGRAPH.

[6]  Micha Sharir,et al.  Identification of Partially Obscured Objects in Two and Three Dimensions by Matching Noisy Characteristic Curves , 1987 .

[7]  Christoph M. Hoffmann,et al.  Geometric and Solid Modeling: An Introduction , 1989 .

[8]  Michael Zyda,et al.  Simplification of objects rendered by polygonal approximations , 1991, Comput. Graph..

[9]  William E. Lorensen,et al.  Decimation of triangle meshes , 1992, SIGGRAPH.

[10]  Wayne E. Carlson,et al.  Shape transformation for polyhedral objects , 1992, SIGGRAPH.

[11]  Bernd Hamann,et al.  Curvature Approximation for Triangulated Surfaces , 1993, Geometric Modelling.

[12]  Jarek Rossignac,et al.  Multi-resolution 3D approximations for rendering complex scenes , 1993, Modeling in Computer Graphics.

[13]  Tony DeRose,et al.  Mesh optimization , 1993, SIGGRAPH.

[14]  Charles D. Hansen,et al.  Geometric optimization , 1993, Proceedings Visualization '93.

[15]  Kenneth L. Clarkson,et al.  Algorithms for Polytope Covering and Approximation , 1993, WADS.

[16]  Subhash Suri,et al.  Surface approximation and geometric partitions , 1994, SODA '94.

[17]  Bernd Hamann,et al.  A data reduction scheme for triangulated surfaces , 1994, Comput. Aided Geom. Des..

[18]  Amitabh Varshney,et al.  Hierarchical geometric approximations , 1994 .

[19]  Joseph O'Rourke,et al.  Computational Geometry in C. , 1995 .

[20]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[21]  Mark de Berg,et al.  On levels of detail in terrains , 1995, SCG '95.

[22]  Alexis Gourdon,et al.  Simplification of Irregular Surface Meshes in 3D Medical Images , 1995, CVRMed.

[23]  Michael T. Goodrich Efficient piecewise-linear function approximation using the uniform metric , 1995, Discret. Comput. Geom..

[24]  Michael Deering,et al.  Geometry compression , 1995, SIGGRAPH.

[25]  Gabriel Taubin,et al.  A signal processing approach to fair surface design , 1995, SIGGRAPH.

[26]  Robert A. Hummel,et al.  Exploiting Triangulated Surface Extraction Using Tetrahedral Decomposition , 1995, IEEE Trans. Vis. Comput. Graph..

[27]  Peter Schröder,et al.  Spherical wavelets: efficiently representing functions on the sphere , 1995, SIGGRAPH.

[28]  Dinesh Manocha,et al.  Simplification envelopes , 1996, SIGGRAPH.

[29]  William Ribarsky,et al.  Real-time, continuous level of detail rendering of height fields , 1996, SIGGRAPH.

[30]  Rémi Ronfard,et al.  Full‐range approximation of triangulated polyhedra. , 1996, Comput. Graph. Forum.

[31]  Reinhard Klein,et al.  Mesh reduction with error control , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[32]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[33]  David Salesin,et al.  Interactive multiresolution surface viewing , 1996, SIGGRAPH.

[34]  Chandrajit L. Bajaj,et al.  Error-bounded reduction of triangle meshes with multivariate data , 1996, Electronic Imaging.

[35]  Russell H. Taylor,et al.  Superfaces: polygonal mesh simplification with bounded error , 1996, IEEE Computer Graphics and Applications.

[36]  Francis Lazarus,et al.  Décomposition cylindrique de polyèdre et courbe squelette , 1996 .

[37]  Markus H. Gross,et al.  Efficient Triangular Surface Approximations Using Wavelets and Quadtree Data Structures , 1996, IEEE Trans. Vis. Comput. Graph..

[38]  Amitabh Varshney,et al.  Dynamic view-dependent simplification for polygonal models , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[39]  Amitabh Varshney,et al.  Controlled Topology Simplification , 1996, IEEE Trans. Vis. Comput. Graph..

[40]  Francis Schmitt,et al.  Mesh Simplification , 1996, Comput. Graph. Forum.

[41]  Tony DeRose,et al.  Multiresolution analysis for surfaces of arbitrary topological type , 1997, TOGS.

[42]  Déformation d'objets 3D sous contraintes à volume constant , 1998 .

[43]  M. Garland,et al.  Fast Polygonal Approximation of Terrains and Height Fields , 1998 .

[44]  Gabriel Taubin,et al.  Geometric compression through topological surgery , 1998, TOGS.