Adaptive Gibbs samplers and related MCMC methods

We consider various versions of adaptive Gibbs and Metropolis- within-Gibbs samplers, which update their selection probabilities (and per- haps also their proposal distributions) on the y during a run, by learning as they go in an attempt to optimise the algorithm. We present a cautionary example of how even a simple-seeming adaptive Gibbs sampler may fail to converge. We then present various positive results guaranteeing convergence of adaptive Gibbs samplers under certain conditions. AMS 2000 subject classications: Primary 60J05, 65C05; secondary 62F15.

[1]  J. Doob Stochastic processes , 1953 .

[2]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[3]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[4]  S. Varadhan,et al.  Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions , 1986 .

[5]  李幼升,et al.  Ph , 1989 .

[6]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[7]  Nicholas G. Polson,et al.  On the Geometric Convergence of the Gibbs Sampler , 1994 .

[8]  Jun S. Liu,et al.  Covariance Structure and Convergence Rate of the Gibbs Sampler with Various Scans , 1995 .

[9]  R. Tweedie,et al.  Rates of convergence of the Hastings and Metropolis algorithms , 1996 .

[10]  A. Gelman,et al.  Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .

[11]  J. Rosenthal,et al.  Geometric Ergodicity and Hybrid Markov Chains , 1997 .

[12]  J. Rosenthal,et al.  Two convergence properties of hybrid samplers , 1998 .

[13]  J. Rosenthal,et al.  Optimal scaling of discrete approximations to Langevin diffusions , 1998 .

[14]  G. Roberts,et al.  Adaptive Markov Chain Monte Carlo through Regeneration , 1998 .

[15]  S. F. Jarner,et al.  Geometric ergodicity of Metropolis algorithms , 2000 .

[16]  J. Rosenthal,et al.  Optimal scaling for various Metropolis-Hastings algorithms , 2001 .

[17]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[18]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[19]  G. Fort,et al.  On the geometric ergodicity of hybrid samplers , 2003, Journal of Applied Probability.

[20]  J. Rosenthal,et al.  General state space Markov chains and MCMC algorithms , 2004, math/0404033.

[21]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[22]  Heikki Haario,et al.  Componentwise adaptation for high dimensional MCMC , 2005, Comput. Stat..

[23]  J. Kadane,et al.  Identification of Regeneration Times in MCMC Simulation, With Application to Adaptive Schemes , 2005 .

[24]  Zhaoxia Yu,et al.  Implementing random scan Gibbs samplers , 2005, Comput. Stat..

[25]  J. Rosenthal,et al.  On adaptive Markov chain Monte Carlo algorithms , 2005 .

[26]  A note on Markov chain Monte Carlo sweep strategies , 2005 .

[27]  Richard A. Levine,et al.  Optimizing random scan Gibbs samplers , 2006 .

[28]  C. Andrieu,et al.  On the ergodicity properties of some adaptive MCMC algorithms , 2006, math/0610317.

[29]  Olle Häggström,et al.  On Variance Conditions for Markov Chain CLTs , 2007 .

[30]  Chao Yang,et al.  On The Weak Law Of Large Numbers For Unbounded Functionals For Adaptive MCMC , 2007 .

[31]  J. Rosenthal,et al.  Coupling and Ergodicity of Adaptive Markov Chain Monte Carlo Algorithms , 2007, Journal of Applied Probability.

[32]  Anne-Mette K. Hein,et al.  BGX: a Bioconductor package for the Bayesian integrated analysis of Affymetrix GeneChips , 2007, BMC Bioinformatics.

[33]  G. Roberts,et al.  Stability of the Gibbs sampler for Bayesian hierarchical models , 2007, 0710.4234.

[34]  Chao Yang,et al.  Recurrent and Ergodic Properties of Adaptive MCMC , 2007 .

[35]  M. B'edard Weak convergence of Metropolis algorithms for non-i.i.d. target distributions , 2007, 0710.3684.

[36]  Krzysztof ski Regeneration and Fixed-Width Analysis of Markov Chain Monte Carlo Algorithms , 2008 .

[37]  M. Bédard Optimal acceptance rates for Metropolis algorithms: Moving beyond 0.234 , 2008 .

[38]  A REGENERATION PROOF OF THE CENTRAL LIMIT THEOREM FOR UNIFORMLY ERGODIC MARKOV CHAINS , 2008 .

[39]  Ajay Jasra,et al.  A regeneration proof of the central limit theorem for uniformly ergodic Markov chains , 2008 .

[40]  P. Diaconis,et al.  Gibbs sampling, exponential families and orthogonal polynomials , 2008, 0808.3852.

[41]  Simultaneous drift conditions for Adaptive Markov Chain Monte Carlo algorithms , 2008 .

[42]  K. Latuszynski,et al.  Regeneration and Fixed-Width Analysis of Markov Chain Monte Carlo Algorithms , 2009, 0907.4716.

[43]  Chao Yang,et al.  Learn From Thy Neighbor: Parallel-Chain and Regional Adaptive MCMC , 2009 .

[44]  Yan Bai,et al.  Divide and Conquer: A Mixture-Based Approach to Regional Adaptation for MCMC , 2009 .

[45]  G. Fort,et al.  Limit theorems for some adaptive MCMC algorithms with subgeometric kernels , 2008, 0807.2952.

[46]  Variable-at-a-time Implementations of Metropolis-Hastings , 2009 .

[47]  Radu V. Craiu,et al.  A Mixture-Based Approach to Regional Adaptive MCMC , 2009 .

[48]  J. Rosenthal,et al.  Department of , 1993 .

[49]  Gareth O. Roberts,et al.  Examples of Adaptive MCMC , 2009 .

[50]  J. Rosenthal,et al.  OPTIMAL SCALING OF METROPOLIS-COUPLED MARKOV CHAIN , 2009 .

[51]  An Adaptive Directional Metropolis-within-Gibbs algorithm , 2009 .

[52]  Yanjia Bai An Adaptive Directional Metropolis-within-Gibbs algorithm , 2009 .

[53]  E. Saksman,et al.  On the ergodicity of the adaptive Metropolis algorithm on unbounded domains , 2008, 0806.2933.

[54]  Jeffrey S. Rosenthal,et al.  Adaptive Gibbs samplers , 2010 .

[55]  Matti Vihola,et al.  On the stability and ergodicity of adaptive scaling Metropolis algorithms , 2009, 0903.4061.

[56]  Jeffrey S. Rosenthal,et al.  Optimal Proposal Distributions and Adaptive MCMC , 2011 .

[57]  P. Priouret,et al.  Bayesian Time Series Models: Adaptive Markov chain Monte Carlo: theory and methods , 2011 .

[58]  Gareth O. Roberts,et al.  Towards optimal scaling of metropolis-coupled Markov chain Monte Carlo , 2011, Stat. Comput..

[59]  S. Richardson,et al.  Bayesian Models for Sparse Regression Analysis of High Dimensional Data , 2012 .

[60]  Alicia A. Johnson,et al.  Component-Wise Markov Chain Monte Carlo: Uniform and Geometric Ergodicity under Mixing and Composition , 2009, 0903.0664.