Backscatter protocols and energy-efficient computing for rf-powered devices

RF-powered computers operate using energy they harvest from radio frequency (RF) signals. Compared to battery powered devices, they have the advantages of being small and long-lived as they do not need to carry an onboard energy-store, and they can be embedded inside objects, structures and even the human body. In this dissertation, I explore how we can build networks of RF-powered computers that support rich functionality across a range of RF environments. Towards this goal, I identify the key challenges to running programs on RF-powered computers, and argue that devices must adapt their behavior to match their task energy consumption to the available power. To demonstrate this approach, I formulate the task scheduling problem for one class of RF-powered devices (computational-RFIDs), and implement Dewdrop, an energy-aware CRFID runtime. By waking tags at the right times, Dewdrop can complete tasks that previously could not complete, and at close to their maximum rate given the power that the RF environment provides. The second challenge I tackle is how to build networks using backscatter communication. Backscatter signaling is an ultra-low power form of communication, but the simplicity needed to achieve such low power operation makes clients prone to interference. To understand how this challenge can be overcome, I use measurement and simulation results to explore the mechanisms by which interference impacts network performance. I then use these insights to develop a network design that mitigates interference and enables backscatter networks to scale well. Experimental results show that this design improves both coverage and capacity in a building-scale network compared to existing designs. This dissertation supports my thesis that RF-powered computers can support rich tasks in a variety of RF environments, and networks of such devices can scale to building-sized deployments. As technology advances, RF-powered devices will only decrease in size and increase in computational power and operational range. By demonstrating that they can also support rich functionality and be used to build building-scale networks, this dissertation demonstrates their potential to provide deeply embedded and long-lived sensing and computation.

[1]  H.T. Friis,et al.  A Note on a Simple Transmission Formula , 1946, Proceedings of the IRE.

[2]  Yuping Zhao,et al.  A Novel Solution to the Reader Collision Problem in RFID System , 2006, 2006 International Conference on Wireless Communications, Networking and Mobile Computing.

[3]  Sridhar Iyer,et al.  PULSE: A MAC Protocol for RFID Networks , 2005, EUC Workshops.

[4]  David Wetherall,et al.  WISP Monitoring and Debugging , 2013 .

[5]  Gustaw Mazurek,et al.  Design of RFID system with DS-CDMA transmission , 2008, 2008 IEEE International Conference on Automation Science and Engineering.

[6]  Maurizio Rebaudengo,et al.  Probabilistic DCS: An RFID reader-to-reader anti-collision protocol , 2011, J. Netw. Comput. Appl..

[7]  B. Nauta,et al.  Analog circuits in ultra-deep-submicron CMOS , 2005, IEEE Journal of Solid-State Circuits.

[8]  Trond Ytterdal Design of energy efficient analog circuits in nanoscale CMOS technologies , 2010, 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology.

[9]  K.S.J. Pister,et al.  An ultra-low energy microcontroller for Smart Dust wireless sensor networks , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[10]  Luca Benini,et al.  Real-time scheduling for energy harvesting sensor nodes , 2007, Real-Time Systems.

[11]  Joseph A. Paradiso,et al.  Energy Scavenging with Shoe-Mounted Piezoelectrics , 2001, IEEE Micro.

[12]  Jiann-Liang Chen,et al.  Array-based reader anti-collision scheme for highly efficient RFID network applications , 2009, Wirel. Commun. Mob. Comput..

[13]  Deepak Ganesan,et al.  Flit: a bulk transmission protocol for RFID-scale sensors , 2012, MobiSys '12.

[14]  Kevin Fu,et al.  Pacemakers and Implantable Cardiac Defibrillators: Software Radio Attacks and Zero-Power Defenses , 2008, 2008 IEEE Symposium on Security and Privacy (sp 2008).

[15]  J. Teizer,et al.  Quadrature Amplitude Modulated Backscatter in Passive and Semipassive UHF RFID Systems , 2012, IEEE Transactions on Microwave Theory and Techniques.

[16]  Kevin Fu,et al.  Towards Autonomously-Powered CRFIDs , 2009 .

[17]  Matthew S. Reynolds,et al.  QAM backscatter for passive UHF RFID tags , 2010, 2010 IEEE International Conference on RFID (IEEE RFID 2010).

[18]  J. Holleman,et al.  NeuralWISP: An energy-harvesting wireless neural interface with 1-m range , 2008, 2008 IEEE Biomedical Circuits and Systems Conference.

[19]  David E. Culler,et al.  Design, Modeling, and Capacity Planning for Micro-solar Power Sensor Networks , 2008, 2008 International Conference on Information Processing in Sensor Networks (ipsn 2008).

[20]  B. Nauta,et al.  Analog/RF circuit design techniques for nanometerscale IC technologies , 2005, Proceedings of the 31st European Solid-State Circuits Conference, 2005. ESSCIRC 2005..

[21]  Philip Levis,et al.  Policies for dynamic clock scheduling , 2000, OSDI.

[22]  David Wetherall,et al.  Dewdrop: An Energy-Aware Runtime for Computational RFID , 2011, NSDI.

[23]  James W. Stevens Optimized Thermal Design of Small ΔT Thermoelectric Generators , 1999 .

[24]  Yi Jia,et al.  A Prototype RFID Humidity Sensor for Built Environment Monitoring , 2008, 2008 International Workshop on Education Technology and Training & 2008 International Workshop on Geoscience and Remote Sensing.

[25]  Stephen Berard,et al.  Implications of Historical Trends in the Electrical Efficiency of Computing , 2011, IEEE Annals of the History of Computing.

[26]  Anantha Chandrakasan,et al.  Vibration-to-electric energy conversion , 1999, Proceedings. 1999 International Symposium on Low Power Electronics and Design (Cat. No.99TH8477).

[27]  David E. Culler,et al.  Epic: An Open Mote Platform for Application-Driven Design , 2008, 2008 International Conference on Information Processing in Sensor Networks (ipsn 2008).

[28]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[29]  Joel L. Dawson,et al.  An energy management IC for bio-implants using ultracapacitors for energy storage , 2010, 2010 Symposium on VLSI Circuits.

[30]  Steve Hodges,et al.  Assessing and Optimizing the Range of UHF RFID to Enable Real-World Pervasive Computing Applications , 2007, Pervasive.

[31]  Mani B. Srivastava,et al.  Design considerations for solar energy harvesting wireless embedded systems , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..

[32]  David E. Culler,et al.  Telos: enabling ultra-low power wireless research , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..

[33]  Preetam Kumar,et al.  Performance Comparison of Orthogonal Gold and Walsh Hadamard Codes for Quasi-Synchronous CDMA Communication , 2009, ICDCN.

[34]  Junyu Wang,et al.  Separation of multiple passive RFID signals using Software Defined Radio , 2009, 2009 IEEE International Conference on RFID.

[35]  Enamul Hoque,et al.  Monitoring body positions and movements during sleep using WISPs , 2010, Wireless Health.

[36]  Bijan Jabbari,et al.  Spreading codes for direct sequence CDMA and wideband CDMA cellular networks , 1998, IEEE Commun. Mag..

[37]  Joseph A. Paradiso,et al.  Energy scavenging for mobile and wireless electronics , 2005, IEEE Pervasive Computing.

[38]  Ian F. Akyildiz,et al.  Wireless sensor networks: a survey , 2002, Comput. Networks.

[39]  Harald Vogt,et al.  Efficient Object Identification with Passive RFID Tags , 2002, Pervasive.

[40]  Mani B. Srivastava,et al.  Adaptive Duty Cycling for Energy Harvesting Systems , 2006, ISLPED'06 Proceedings of the 2006 International Symposium on Low Power Electronics and Design.

[41]  Alanson P. Sample,et al.  Photovoltaic enhanced UHF RFID tag antennas for dual purpose energy harvesting , 2011, 2011 IEEE International Conference on RFID.

[42]  Kristofer S. J. Pister,et al.  Theoretical and Practical Limits to Sensitivity in IEEE 802.15.4 Receivers , 2007, 2007 14th IEEE International Conference on Electronics, Circuits and Systems.

[43]  Anantha P. Chandrakasan,et al.  Low-power CMOS digital design , 1992 .

[44]  David E. Culler,et al.  Perpetual environmentally powered sensor networks , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..

[45]  Young-Jin Park,et al.  Design of a Low-Noise UWB Transceiver SiP , 2008, IEEE Design & Test of Computers.

[46]  F. Chu,et al.  Current and future ferroelectric nonvolatile memory technology , 2001 .

[47]  Daniel W. Engels,et al.  The reader collision problem , 2002, IEEE International Conference on Systems, Man and Cybernetics.

[48]  Dariush Divsalar,et al.  Some interesting observations for certain line codes with application to RFID , 2006, IEEE Transactions on Communications.

[49]  Daniel E. Holcomb,et al.  Initial SRAM State as a Fingerprint and Source of True Random Numbers for RFID Tags , 2007 .

[50]  E Xample A Pplications Revisiting Smart Dust with RFID Sensor Networks , 2008 .

[51]  Amine Bermak,et al.  Correction to "A Sub- μ W Embedded CMOS Temperature Sensor for RFID Food Monitoring Application" [Jun 10 1246-1255] , 2010, IEEE J. Solid State Circuits.

[52]  P.V. Nikitin,et al.  Performance limitations of passive UHF RFID systems , 2006, 2006 IEEE Antennas and Propagation Society International Symposium.

[53]  S. W. Depp,et al.  Short-range radio-telemetry for electronic identification, using modulated RF backscatter , 1975, Proceedings of the IEEE.

[54]  Luiz André Barroso,et al.  The Case for Energy-Proportional Computing , 2007, Computer.

[55]  F. Schoute,et al.  Dynamic Frame Length ALOHA , 1983, IEEE Trans. Commun..

[56]  Tadayoshi Kohno,et al.  EPC RFID tag security weaknesses and defenses: passport cards, enhanced drivers licenses, and beyond , 2009, CCS.

[57]  Kevin Fu,et al.  CCCP: Secure Remote Storage for Computational RFIDs , 2009, USENIX Security Symposium.

[58]  T. Ytterdal,et al.  On the energy efficiency of analog circuits in nanoscale CMOS technologies , 2008, 2008 International Conference on Microelectronics.

[59]  Leilani Battle,et al.  Building the Internet of Things Using RFID: The RFID Ecosystem Experience , 2009, IEEE Internet Computing.

[60]  David Blaauw,et al.  A cubic-millimeter energy-autonomous wireless intraocular pressure monitor , 2011, 2011 IEEE International Solid-State Circuits Conference.

[61]  Mani B. Srivastava,et al.  Power management in energy harvesting sensor networks , 2007, TECS.

[62]  Mani B. Srivastava,et al.  Harvesting aware power management for sensor networks , 2006, 2006 43rd ACM/IEEE Design Automation Conference.

[63]  David Wetherall,et al.  An empirical study of UHF RFID performance , 2008, MobiCom '08.

[64]  Shiping Chen,et al.  Energy-efficient polling protocols in RFID systems , 2011, MobiHoc '11.

[65]  Biswanath Mukherjee,et al.  Wireless sensor network survey , 2008, Comput. Networks.

[66]  David Wetherall,et al.  Recognizing daily activities with RFID-based sensors , 2009, UbiComp.

[67]  Christofer Toumazou,et al.  A 1 V Wireless Transceiver for an Ultra-Low-Power SoC for Biotelemetry Applications , 2008, IEEE Journal of Solid-State Circuits.

[68]  Roland Zengerle,et al.  Energy harvesting by implantable abiotically catalyzed glucose fuel cells , 2008 .

[69]  Joshua R. Smith Range Scaling of Wirelessly Powered Sensor Systems , 2013 .

[70]  David Wetherall,et al.  A software radio-based UHF RFID reader for PHY/MAC experimentation , 2011, 2011 IEEE International Conference on RFID.

[71]  Lawrence G. Roberts,et al.  ALOHA packet system with and without slots and capture , 1975, CCRV.

[72]  Deepak Ganesan,et al.  BLINK: a high throughput link layer for backscatter communication , 2012, MobiSys '12.

[73]  Joshua R. Smith,et al.  Experimental results with two wireless power transfer systems , 2009, 2009 IEEE Radio and Wireless Symposium.

[74]  Hoi-Jun Yoo,et al.  A 60 kb/s–10 Mb/s Adaptive Frequency Hopping Transceiver for Interference-Resilient Body Channel Communication , 2009, IEEE Journal of Solid-State Circuits.

[75]  Alanson P. Sample,et al.  Design of an RFID-Based Battery-Free Programmable Sensing Platform , 2008, IEEE Transactions on Instrumentation and Measurement.

[76]  Gaetano Borriello,et al.  An RFID based system for monitoring free weight exercises , 2008, SenSys '08.

[77]  Kwan-Wu Chin,et al.  A Survey and Tutorial of RFID Anti-Collision Protocols , 2010, IEEE Communications Surveys & Tutorials.

[78]  Daniel W. Engels,et al.  HiQ: a hierarchical Q-learning algorithm to solve the reader collision problem , 2006, International Symposium on Applications and the Internet Workshops (SAINTW'06).

[79]  R. Feynman,et al.  The Pleasure of Finding Things Out: The Best Short Works of Richard Feynman , 1999 .

[80]  C. Mutti,et al.  CDMA-based RFID Systems in Dense Scenarios: Concepts and Challenges , 2008, 2008 IEEE International Conference on RFID.

[81]  Luca Benini,et al.  An Efficient Solar Energy Harvester for Wireless Sensor Nodes , 2008, 2008 Design, Automation and Test in Europe.

[82]  J. A. Landt,et al.  Electronic weighing, identification and subdermal body temperature sensing of range livestock , 1980 .

[83]  Vijay Pillai,et al.  An Ultra-Low-Power Long Range Battery/Passive RFID Tag for UHF and Microwave Bands With a Current Consumption of 700 nA at 1.5 V , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[84]  Yue Wang,et al.  Exploiting Half-Wits: Smarter Storage for Low-Power Devices , 2011, FAST.

[85]  Gabor Karsai,et al.  Smart Dust: communicating with a cubic-millimeter computer , 2001 .

[86]  Gary M. Gaukler Item-Level RFID in a Retail Supply Chain With Stock-Out-Based Substitution , 2011, IEEE Transactions on Industrial Informatics.

[87]  S. Ramamurthy,et al.  Passive tag-to-tag communication , 2012, 2012 IEEE International Conference on RFID (RFID).

[88]  K.S.J. Pister,et al.  Low-Power 2.4-GHz Transceiver With Passive RX Front-End and 400-mV Supply , 2006, IEEE Journal of Solid-State Circuits.

[89]  S. J. Thomas,et al.  A 96 Mbit/sec, 15.5 pJ/bit 16-QAM modulator for UHF backscatter communication , 2012, 2012 IEEE International Conference on RFID (RFID).

[90]  Hoi-Jun Yoo,et al.  A 10.8 mW Body Channel Communication/MICS Dual-Band Transceiver for a Unified Body Sensor Network Controller , 2009, IEEE Journal of Solid-State Circuits.

[91]  Ananth Grama,et al.  Redundant reader elimination in RFID systems , 2005, 2005 Second Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, 2005. IEEE SECON 2005..

[92]  Manfred Glesner,et al.  Automatic imepdance matching in Microwave power harvesters , 2010, 6th Conference on Ph.D. Research in Microelectronics & Electronics.

[93]  Kang G. Shin,et al.  Real-time dynamic voltage scaling for low-power embedded operating systems , 2001, SOSP.

[94]  Ke Shao,et al.  0.15-nJ/b 3–5-GHz IR-UWB System With Spectrum Tunable Transmitter and Merged-Correlator Noncoherent Receiver , 2011, IEEE Transactions on Microwave Theory and Techniques.

[95]  Daeyeon Kim,et al.  The Phoenix Processor: A 30pW platform for sensor applications , 2008, 2008 IEEE Symposium on VLSI Circuits.

[96]  Daniel W. Engels,et al.  Colorwave: a MAC for RFID reader networks , 2003, 2003 IEEE Wireless Communications and Networking, 2003. WCNC 2003..

[97]  Tadayoshi Kohno,et al.  RFIDs and secret handshakes: defending against ghost-and-leech attacks and unauthorized reads with context-aware communications , 2008, CCS.

[98]  Kevin Fu,et al.  Mementos: system support for long-running computation on RFID-scale devices , 2011, ASPLOS XVI.

[99]  John Anderson,et al.  Wireless sensor networks for habitat monitoring , 2002, WSNA '02.

[100]  Yuanjin Zheng,et al.  A CMOS Carrier-less UWB Transceiver for WPAN Applications , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[101]  David E. Culler,et al.  System architecture directions for networked sensors , 2000, SIGP.

[102]  Jun-Seok Park,et al.  Effects of reader interference on the RFID interrogation range , 2007, 2007 European Microwave Conference.

[103]  Kevin Fu,et al.  Getting Things Done on Computational RFIDs with Energy-Aware Checkpointing and Voltage-Aware Scheduling , 2008, HotPower.

[104]  Micah Z. Brodsky,et al.  In defense of wireless carrier sense , 2009, SIGCOMM '09.

[105]  M.A.T. Sanduleanu,et al.  17 GHz RF Front-Ends for Low-Power Wireless Sensor Networks , 2008, IEEE Journal of Solid-State Circuits.

[106]  J. Landt,et al.  The history of RFID , 2005, IEEE Potentials.

[107]  Naveen Verma,et al.  Design considerations for ultra-low energy wireless microsensor nodes , 2005, IEEE Transactions on Computers.

[108]  Giuseppe Palmisano,et al.  A 90-nm CMOS Threshold-Compensated RF Energy Harvester , 2011, IEEE Journal of Solid-State Circuits.

[109]  David Wetherall,et al.  A "Gen 2" RFID monitor based on the USRP , 2010, CCRV.

[110]  Kevin Fu,et al.  On the limits of effective hybrid micro-energy harvesting on mobile CRFID sensors , 2010, MobiSys '10.

[111]  M. Rupp,et al.  A comparative study of RFID schedulers in dense reader environments , 2010, 2010 IEEE International Conference on Industrial Technology.

[112]  Shoichi Masui,et al.  A Passive UHF RFID Tag LSI with 36.6% Efficiency CMOS-Only Rectifier and Current-Mode Demodulator in 0.35/spl mu/m FeRAM Technology , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.