Stellar coronagraphy with prolate apodized circular apertures

This paper generalizes to circular apertures the theoretical study of stellar coronagraphy with prolate apodized rectangular entrance apertures of Aime et al. (2002). The main difference between the two studies is that circular prolate spheroidal functions are used for a circular aperture instead of linear prolate spheroidal functions for rectangular apertures. Owing to the radial property of the problem, the solution to the general equation for coronagraphy is solved using a Hankel transform instead of a product of Fourier transforms in the rectangular case. This new theoretical study permits a better understanding of coronagraphy, stressing the importance of entrance pupil apodization. A comparison with the classical unapodized Lyot technique is performed: a typical gain of 10 4 to 10 6 can be obtained theoretically with this technique. Circular and rectangular apertures give overall comparable results: a total extinction of the star light is obtained for Roddier & Roddier's phase mask technique whilst optimal starlight rejections are obtained with a Lyot opaque mask. A precise comparison between a circular aperture and a square aperture of same surface favors the use of a circular aperture for detection of extrasolar planets.

[1]  D. Slepian,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — II , 1961 .

[2]  D. Slepian Prolate spheroidal wave functions, Fourier analysis and uncertainty — IV: Extensions to many dimensions; generalized prolate spheroidal functions , 1964 .

[3]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[4]  J. Goodman Introduction to Fourier optics , 1969 .

[5]  Antoine Labeyrie,et al.  Lock-In Image Subtraction: Detectability of Circumstellar Planets with the Large Space Telescope , 1975 .

[6]  C. G. Wyne Extending the bandwidth of speckle interferometry , 1979 .

[7]  F. Roddier,et al.  Twin-image holography with spectrally broad light , 1980 .

[8]  Bradford A. Smith,et al.  A Circumstellar Disk Around β Pictoris , 1984, Science.

[9]  James P. Mills,et al.  Direct imaging of nonsolar planets with infrared telescopes using apodized coronagraphs. , 1991, Applied optics.

[10]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[11]  Stephen Wolfram,et al.  The Mathematica Book , 1996 .

[12]  D. Mouillet,et al.  A STELLAR CORONOGRAPH FOR THE COME-ON-PLUS ADAPTIVE OPTICS SYSTEM. II. FIRST ASTRONOMICAL RESULTS , 1997 .

[13]  F. Roddier,et al.  STELLAR CORONOGRAPH WITH PHASE MASK , 1997 .

[14]  C. Moutou,et al.  PRESENT PERFORMANCE OF THE DARK-SPECKLE CORONAGRAPH , 1998 .

[15]  Pierre Baudoz,et al.  Achromatic interfero coronagraphy - II. Effective performance on the sky , 2000 .

[16]  A. Labeyrie,et al.  The Four-Quadrant Phase-Mask Coronagraph. I. Principle , 2000 .

[17]  P. Baudoz,et al.  Achromatic interfero coronagraphy I. Theoretical capabilities for ground-based observations , 2000 .

[18]  A. Boccaletti,et al.  The achromatic phase knife coronagraph , 2001 .

[19]  P. Nisenson,et al.  Detection of Earth-like Planets Using Apodized Telescopes , 2001, astro-ph/0101241.

[20]  C. Aime,et al.  Interferometric apodization of rectangular apertures - Application to stellar coronagraphy , 2001 .

[21]  C. Aime,et al.  Total coronagraphic extinction of rectangular apertures using linear prolate apodizations , 2002 .

[22]  Lyu Abe,et al.  Phase Knife Coronagraph II - Laboratory results , 2003 .