Characterization of intersecting families of maximum size in PSL(2, q)

We consider the action of the $2$-dimensional projective special linear group $PSL(2,q)$ on the projective line $PG(1,q)$ over the finite field $\F_q$, where $q$ is an odd prime power. A subset $S$ of $PSL(2,q)$ is said to be an intersecting family if for any $g_1,g_2 \in S$, there exists an element $x\in PG(1,q)$ such that $x^{g_1}= x^{g_2}$. It is known that the maximum size of an intersecting family in $PSL(2,q)$ is $q(q-1)/2$. We prove that all intersecting families of maximum size are cosets of point stabilizers for all odd prime powers $q>3$.

[1]  Claudia Malvenuto,et al.  Stable sets of maximal size in Kneser-type graphs , 2004, Eur. J. Comb..

[2]  Rafael Plaza Stability for Intersecting Families in PGL(2, q) , 2015, Electron. J. Comb..

[3]  N. Yui Update on the modularity of Calabi-Yau varieties , 2003 .

[4]  David Ellis,et al.  A proof of the Cameron–Ku conjecture , 2008, J. Lond. Math. Soc..

[5]  Chris D. Godsil,et al.  A new proof of the Erdös-Ko-Rado theorem for intersecting families of permutations , 2007, Eur. J. Comb..

[6]  Holly Swisher,et al.  Hypergeometric Functions over Finite Fields , 2015, 2017 MATRIX Annals.

[7]  N. Yui,et al.  Rigid CalabiYau threefolds over Q are modular , 2009, 0902.1466.

[8]  Maarten Roelofsma Finite hypergeometric functions , 2014 .

[9]  Peter Frankl,et al.  On the Maximum Number of Permutations with Given Maximal or Minimal Distance , 1977, J. Comb. Theory, Ser. A.

[10]  Cheng Yeaw Ku,et al.  Intersecting Families in the Alternating Group and Direct Product of Symmetric Groups , 2007, Electron. J. Comb..

[11]  P. Erdös,et al.  INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS , 1961 .

[12]  N. Nygaard,et al.  On the Geometry and Arithmetic of Some Siegel Modular Threefolds , 1995 .

[13]  D. McDonough George , 1922, The Psychological clinic.

[14]  Ken Ono,et al.  A Gaussian hypergeometric series evaluation and Apéry number congruences , 2000 .

[15]  Haran Pilpel,et al.  Intersecting Families of Permutations , 2010, 1011.3342.

[16]  H. Cohen,et al.  Finite hypergeometric functions , 2015, 1505.02900.

[17]  Pablo Spiga,et al.  An Erdős-Ko-Rado theorem for finite 2-transitive groups , 2016, Eur. J. Comb..

[18]  H. Verrill The L-series of Certain Rigid Calabi–Yau Threefolds , 2000 .

[19]  Bahman Ahmadi,et al.  A new proof for the Erdős-Ko-Rado theorem for the alternating group , 2014, Discret. Math..

[20]  J. Cassels,et al.  ABELIAN l -ADIC REPRESENTATIONS AND ELLIPTIC CURVES , 1969 .

[21]  N. M. Katz Exponential sums and di?erential equations , 1990 .

[22]  F. R. Villegas Hypergeometric families of Calabi-Yau manifolds , 2016 .

[23]  D. Straten,et al.  Generalized hypergeometric functions and rational curves on Calabi-Yau complete intersections in toric varieties , 1993, alg-geom/9307010.

[24]  N. Yui,et al.  Supercongruences for rigid hypergeometric Calabi–Yau threefolds , 2017, Advances in Mathematics.

[25]  Randall R. Holmes Linear Representations of Finite Groups , 2008 .

[26]  Karen Meagher,et al.  The Erdős-Ko-Rado Property for Some 2-Transitive Groups , 2013, 1308.0621.

[27]  Pablo Spiga,et al.  An Erdös-Ko-Rado Theorem for the Derangement Graph of PGL3(q) Acting on the Projective Plane , 2009, SIAM J. Discret. Math..

[28]  Richard M. Wilson,et al.  The exact bound in the Erdös-Ko-Rado theorem , 1984, Comb..

[29]  Yuval Filmus,et al.  A quasi-stability result for dictatorships in Sn , 2012, Comb..

[30]  Legendre sums, Soto–Andrade sums and Kloosterman sums , 2002 .

[31]  Pablo Spiga,et al.  An Erdös-Ko-Rado Theorem for the Derangement Graph of PGL3(q) Acting on the Projective Plane , 2014, SIAM J. Discret. Math..

[32]  K. Ono Values of Gaussian hypergeometric series , 1998 .

[33]  Ilya Piatetski-Shapiro,et al.  Complex representations of GL(2,K) for finite fields K , 1983 .

[34]  H. Niederreiter,et al.  Finite Fields: Encyclopedia of Mathematics and Its Applications. , 1997 .