Bondal–Orlov fully faithfulness criterion for Deligne–Mumford stacks

[1]  M. Larsen,et al.  Categorical measures for finite group actions , 2017, Journal of Algebraic Geometry.

[2]  A. C. L. Mart'in Fully faithfulness criteria for quasi-projective schemes , 2017 .

[3]  Francesco Genovese,et al.  Adjunctions of Quasi-Functors Between DG-Categories , 2015, Appl. Categorical Struct..

[4]  Brion Bri PERFECT COMPLEXES ON ALGEBRAIC STACKS , 2017 .

[5]  Olaf M. Schnürer,et al.  Geometricity for derived categories of algebraic stacks , 2016, 1601.04465.

[6]  A. Bertram,et al.  On the geometry of Deligne-Mumford stacks , 2009 .

[7]  Fabio Nironi Grothendieck Duality for Deligne-Mumford Stacks , 2008, 0811.1955.

[8]  D. Nadler,et al.  Integral Transforms and Drinfeld Centers in Derived Algebraic Geometry , 2008, 0805.0157.

[9]  F. S. D. Salas Koszul complexes and fully faithful integral functors , 2007, 0712.0261.

[10]  S. Willerton,et al.  The Mukai pairing, I: a categorical approach , 2007, 0707.2052.

[11]  D. H. Ruip'erez,et al.  Relative integral functors for singular fibrations and singular partners , 2006, math/0610319.

[12]  Jiun C. Chen,et al.  A note on derived McKay correspondence , 2006, math/0609737.

[13]  L. V. Keldysh Fourier-Mukai Transforms in Algebraic Geometry , 2006 .

[14]  Daniel Huybrechts,et al.  Fourier-Mukai transforms in algebraic geometry , 2006 .

[15]  A. Căldăraru Non-Fine Moduli Spaces of Sheaves on K3 Surfaces , 2001, math/0108180.

[16]  T. Bridgeland Equivalences of Triangulated Categories and Fourier–Mukai Transforms , 1998, math/9809114.