Maturation of the mammalian secretome

A recent use of quantitative proteomics to determine the constituents of the endoplasmic reticulum and Golgi complex is discussed in the light of other available methodologies for cataloging the proteins associated with the mammalian secretory pathway.

[1]  R. Schekman,et al.  Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway , 1980, Cell.

[2]  M. Aridor,et al.  Traffic Jams II: An Update of Diseases of Intracellular Transport , 2002, Traffic.

[3]  J. Yates,et al.  Proteomics of rat liver Golgi complex: Minor proteins are identified through sequential fractionation , 2000, Electrophoresis.

[4]  A. Poustka,et al.  Systematic subcellular localization of novel proteins identified by large‐scale cDNA sequencing , 2000, EMBO reports.

[5]  Rainer Pepperkok,et al.  Coupling of ER exit to microtubules through direct interaction of COPII with dynactin , 2005, Nature Cell Biology.

[6]  Stefan Wiemann,et al.  High-content screening microscopy identifies novel proteins with a putative role in secretory membrane traffic. , 2004, Genome research.

[7]  G. Rubin,et al.  Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[8]  D. Stephens,et al.  PCTAIRE protein kinases interact directly with the COPII complex and modulate secretory cargo transport , 2005, Journal of Cell Science.

[9]  Jyoti S. Choudhary,et al.  Proteomics Characterization of Abundant Golgi Membrane Proteins* , 2001, The Journal of Biological Chemistry.

[10]  Y. Hiraoka,et al.  ORFeome cloning and global analysis of protein localization in the fission yeast Schizosaccharomyces pombe , 2006, Nature Biotechnology.

[11]  J. Yates,et al.  Organellar proteomics reveals Golgi arginine dimethylation. , 2004, Molecular biology of the cell.

[12]  N. Perrimon,et al.  Functional genomics reveals genes involved in protein secretion and Golgi organization , 2006, Nature.

[13]  J. Ellenberg,et al.  High-throughput fluorescence microscopy for systems biology , 2006, Nature Reviews Molecular Cell Biology.

[14]  Jeremy C Simpson,et al.  Localizing the proteome , 2003, Genome Biology.

[15]  Erik K. Malm,et al.  A Human Protein Atlas for Normal and Cancer Tissues Based on Antibody Proteomics* , 2005, Molecular & Cellular Proteomics.

[16]  J. Presley Imaging the secretory pathway: the past and future impact of live cell optical techniques. , 2005, Biochimica et biophysica acta.

[17]  R. Murphy,et al.  Automated subcellular location determination and high-throughput microscopy. , 2007, Developmental cell.

[18]  M. Mann,et al.  Organellar proteomics: turning inventories into insights , 2006, EMBO reports.

[19]  A. Poustka,et al.  γ‐BAR, a novel AP‐1‐interacting protein involved in post‐Golgi trafficking , 2005, The EMBO journal.

[20]  E. O’Shea,et al.  Global analysis of protein localization in budding yeast , 2003, Nature.

[21]  Hilmar Lapp,et al.  Large-scale profiling of Rab GTPase trafficking networks: the membrome. , 2005, Molecular biology of the cell.

[22]  M. Gerstein,et al.  Subcellular localization of the yeast proteome. , 2002, Genes & development.

[23]  Michelle S. Scott,et al.  Global Survey of Organ and Organelle Protein Expression in Mouse: Combined Proteomic and Transcriptomic Profiling , 2006, Cell.

[24]  Xiaohui S. Xie,et al.  A Mammalian Organelle Map by Protein Correlation Profiling , 2006, Cell.

[25]  K. Lilley,et al.  Comparative proteomics of clathrin-coated vesicles , 2006, The Journal of cell biology.

[26]  J. Bonifacino,et al.  The Mechanisms of Vesicle Budding and Fusion , 2004, Cell.

[27]  H. Erfle,et al.  An RNAi screening platform to identify secretion machinery in mammalian cells. , 2007, Journal of biotechnology.

[28]  Robert E. Kearney,et al.  Quantitative Proteomics Analysis of the Secretory Pathway , 2006, Cell.

[29]  H. Erfle,et al.  High-throughput RNAi screening by time-lapse imaging of live human cells , 2006, Nature Methods.

[30]  Alexander W Bell,et al.  Tandem MS analysis of brain clathrin-coated vesicles reveals their critical involvement in synaptic vesicle recycling. , 2004, Proceedings of the National Academy of Sciences of the United States of America.