Phosphoproteomic changes in root cells of Poncirus trifoliata (L.) Raf. induced by Rhizophagus intraradices inoculation

[1]  H. Van Erp,et al.  Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant , 2017, Science.

[2]  D. Tang,et al.  Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi , 2017, Science.

[3]  M. Westphall,et al.  Identification of the phosphorylation targets of symbiotic receptor‐like kinases using a high‐throughput multiplexed assay for kinase specificity , 2017, The Plant journal : for cell and molecular biology.

[4]  Qing Kong,et al.  The NLR protein SUMM2 senses the disruption of an immune signaling MAP kinase cascade via CRCK3 , 2017, EMBO reports.

[5]  J. Stajich,et al.  A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data , 2016, Mycologia.

[6]  Yue Jin,et al.  DELLA proteins are common components of symbiotic rhizobial and mycorrhizal signalling pathways , 2016, Nature Communications.

[7]  Michael R Sussman,et al.  Mass Spectrometric-Based Selected Reaction Monitoring of Protein Phosphorylation during Symbiotic Signaling in the Model Legume, Medicago truncatula , 2016, PloS one.

[8]  Sean J. Humphrey,et al.  Protein Phosphorylation: A Major Switch Mechanism for Metabolic Regulation , 2015, Trends in Endocrinology & Metabolism.

[9]  Zuhua He,et al.  The receptor kinase CERK1 has dual functions in symbiosis and immunity signalling. , 2015, The Plant journal : for cell and molecular biology.

[10]  K. Akiyama,et al.  The bifunctional plant receptor, OsCERK1, regulates both chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice. , 2014, Plant & cell physiology.

[11]  Mark Stitt,et al.  Mercator: a fast and simple web server for genome scale functional annotation of plant sequence data. , 2014, Plant, cell & environment.

[12]  U. Paszkowski,et al.  Polyphony in the rhizosphere: presymbiotic communication in arbuscular mycorrhizal symbiosis. , 2013, Current opinion in plant biology.

[13]  I. Damiani,et al.  Hydrogen peroxide-regulated genes in the Medicago truncatula-Sinorhizobium meliloti symbiosis. , 2013, The New phytologist.

[14]  Andrea Genre,et al.  Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone. , 2013, The New phytologist.

[15]  G. Oldroyd Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants , 2013, Nature Reviews Microbiology.

[16]  Niranjan Nagarajan,et al.  The draft genome of sweet orange (Citrus sinensis) , 2012, Nature Genetics.

[17]  Peng Wang,et al.  Differential regulation of Pht1 phosphate transporters from trifoliate orange (Poncirus trifoliata L. Raf) seedlings , 2012 .

[18]  Dong Xu,et al.  Quantitative Phosphoproteomic Analysis of Soybean Root Hairs Inoculated with Bradyrhizobium japonicum* , 2012, Molecular & Cellular Proteomics.

[19]  Q. Xie,et al.  A Ubiquitin Ligase of Symbiosis Receptor Kinase Involved in Nodule Organogenesis1[C][W][OA] , 2012, Plant Physiology.

[20]  Christopher M Rose,et al.  Rapid Phosphoproteomic and Transcriptomic Changes in the Rhizobia-legume Symbiosis* , 2012, Molecular & Cellular Proteomics.

[21]  R. Branca,et al.  Tumor Proteomics by Multivariate Analysis on Individual Pathway Data for Characterization of Vulvar Cancer Phenotypes* , 2012, Molecular & Cellular Proteomics.

[22]  S. Yoshida,et al.  Lotus japonicus E3 Ligase SEVEN IN ABSENTIA4 Destabilizes the Symbiosis Receptor-Like Kinase SYMRK and Negatively Regulates Rhizobial Infection[C][W] , 2012, Plant Cell.

[23]  R. Hedrich,et al.  A member of the mitogen-activated protein 3-kinase family is involved in the regulation of plant vacuolar glucose uptake. , 2011, The Plant journal : for cell and molecular biology.

[24]  Alvaro J. González,et al.  The Medicago Genome Provides Insight into the Evolution of Rhizobial Symbioses , 2011, Nature.

[25]  Daniel Schwartz,et al.  Biological sequence motif discovery using motif-x. , 2011, Current protocols in bioinformatics.

[26]  M. Parniske,et al.  Phosphoproteome analysis of Lotus japonicus roots reveals shared and distinct components of symbiosis and defense. , 2011, Molecular plant-microbe interactions : MPMI.

[27]  S. Peck,et al.  Arabidopsis MAP Kinase Phosphatase 1 (AtMKP1) negatively regulates MPK6-mediated PAMP responses and resistance against bacteria. , 2011, The Plant journal : for cell and molecular biology.

[28]  Jean Dénarié,et al.  Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza , 2011, Nature.

[29]  O. Alizadeh,et al.  Mycorrhizal Symbiosis , 1986, Forest Science.

[30]  L. Deslandes,et al.  The Medicago truncatula E3 Ubiquitin Ligase PUB1 Interacts with the LYK3 Symbiotic Receptor and Negatively Regulates Infection and Nodulation[W][OA] , 2010, Plant Cell.

[31]  R. Hedrich,et al.  Increased Activity of the Vacuolar Monosaccharide Transporter TMT1 Alters Cellular Sugar Partitioning, Sugar Signaling, and Seed Yield in Arabidopsis1[OA] , 2010, Plant Physiology.

[32]  M. Tomita,et al.  Large-Scale Comparative Phosphoproteomics Identifies Conserved Phosphorylation Sites in Plants1[W][OA] , 2010, Plant Physiology.

[33]  T. Sakurai,et al.  Genome sequence of the palaeopolyploid soybean , 2010, Nature.

[34]  Ning Ma,et al.  BLAST+: architecture and applications , 2009, BMC Bioinformatics.

[35]  M. Sussman,et al.  Large-Scale Phosphoprotein Analysis in Medicago truncatula Roots Provides Insight into in Vivo Kinase Activity in Legumes1[W] , 2009, Plant Physiology.

[36]  H. Hirt,et al.  MAP KINASE PHOSPHATASE1 and PROTEIN TYROSINE PHOSPHATASE1 Are Repressors of Salicylic Acid Synthesis and SNC1-Mediated Responses in Arabidopsis[C][W] , 2009, The Plant Cell Online.

[37]  M. Mann,et al.  Universal sample preparation method for proteome analysis , 2009, Nature Methods.

[38]  Martin Parniske,et al.  Arbuscular mycorrhiza: the mother of plant root endosymbioses , 2008, Nature Reviews Microbiology.

[39]  M. Tomita,et al.  Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis , 2008, Molecular systems biology.

[40]  Christophe Maurel,et al.  Plant aquaporins: membrane channels with multiple integrated functions. , 2008, Annual review of plant biology.

[41]  M. Mann,et al.  PHOSIDA (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites , 2007, Genome Biology.

[42]  S. Mathivanan,et al.  A curated compendium of phosphorylation motifs , 2007, Nature Biotechnology.

[43]  Tatiana Tatusova,et al.  NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins , 2004, Nucleic Acids Res..

[44]  H. Kouchi,et al.  Transcriptome Profiling of Lotus japonicus Roots During Arbuscular Mycorrhiza Development and Comparison with that of Nodulation , 2007, DNA research : an international journal for rapid publication of reports on genes and genomes.

[45]  Steven P Gygi,et al.  A probability-based approach for high-throughput protein phosphorylation analysis and site localization , 2006, Nature Biotechnology.

[46]  G. Stacey,et al.  Effects of Endogenous Salicylic Acid on Nodulation in the Model Legumes Lotus japonicus and Medicago truncatula1[W] , 2006, Plant Physiology.

[47]  E. Salih Phosphoproteomics by mass spectrometry and classical protein chemistry approaches. , 2005, Mass spectrometry reviews.

[48]  P. Roepstorff,et al.  Highly Selective Enrichment of Phosphorylated Peptides from Peptide Mixtures Using Titanium Dioxide Microcolumns* , 2005, Molecular & Cellular Proteomics.

[49]  K. Parker,et al.  Multiplexed Protein Quantitation in Saccharomyces cerevisiae Using Amine-reactive Isobaric Tagging Reagents*S , 2004, Molecular & Cellular Proteomics.

[50]  A. Pühler,et al.  Transcriptome profiling in root nodules and arbuscular mycorrhiza identifies a collection of novel genes induced during Medicago truncatula root endosymbioses. , 2004, Molecular plant-microbe interactions : MPMI.

[51]  Dominique C Bergmann,et al.  Stomatal Development and Pattern Controlled by a MAPKK Kinase , 2004, Science.

[52]  C. Town,et al.  Transcript Profiling Coupled with Spatial Expression Analyses Reveals Genes Involved in Distinct Developmental Stages of an Arbuscular Mycorrhizal Symbiosis Online version contains Web-only data. Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tp , 2003, The Plant Cell Online.

[53]  H. Vierheilig,et al.  Root colonization by arbuscular mycorrhizal fungi is affected by the salicylic acid content of the plant , 2003 .

[54]  H. Vierheilig,et al.  Ink and Vinegar, a Simple Staining Technique for Arbuscular-Mycorrhizal Fungi , 1998, Applied and Environmental Microbiology.

[55]  T. Taylor,et al.  Four hundred-million-year-old vesicular arbuscular mycorrhizae. , 1994, Proceedings of the National Academy of Sciences of the United States of America.