Dynamic Persistent Homology for Brain Networks via Wasserstein Graph Clustering

We present the novel Wasserstein graph clustering for dynamically changing graphs. The Wasserstein clustering penalizes the topological discrepancy between graphs. The Wasserstein clustering is shown to outperform the widely used :-means clustering. The method applied in more accurate determination of the state spaces of dynamically changing functional brain networks.

[1]  Victor Solo,et al.  Topological Distances Between Brain Networks , 2017, CNI@MICCAI.

[2]  Sayan Mukherjee,et al.  Fréchet Means for Distributions of Persistence Diagrams , 2012, Discrete & Computational Geometry.

[3]  A. W. M. van den Enden,et al.  Discrete Time Signal Processing , 1989 .

[4]  Vince D. Calhoun,et al.  Time-Varying Brain Connectivity in fMRI Data: Whole-brain data-driven approaches for capturing and characterizing dynamic states , 2016, IEEE Signal Processing Magazine.

[5]  Moo K. Chung,et al.  Computational Neuroanatomy: The Methods , 2012 .

[6]  Moo K. Chung,et al.  Weighted Fourier Series Representation and Its Application to Quantifying the Amount of Gray Matter , 2007, IEEE Transactions on Medical Imaging.

[7]  Jaejun Yoo,et al.  Topological persistence vineyard for dynamic functional brain connectivity during resting and gaming stages , 2016, Journal of Neuroscience Methods.

[8]  Olaf Sporns,et al.  Graph Theory Methods for the Analysis of Neural Connectivity Patterns , 2003 .

[9]  Guorong Wu,et al.  Sliding window correlation analysis: Modulating window shape for dynamic brain connectivity in resting state , 2019, NeuroImage.

[10]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[11]  S. Balqis Samdin,et al.  Estimating Dynamic Connectivity States in fMRI Using Regime-Switching Factor Models , 2018, IEEE Transactions on Medical Imaging.

[12]  Christos Davatzikos,et al.  Smile-GANs: Semi-supervised clustering via GANs for dissecting brain disease heterogeneity from medical images , 2020, ArXiv.

[13]  Linda Douw,et al.  Topological phase transitions in functional brain networks , 2018, bioRxiv.

[14]  Moo K. Chung,et al.  Exact Combinatorial Inference for Brain Images , 2018, MICCAI.

[15]  V. Calhoun,et al.  Dynamic connectivity states estimated from resting fMRI Identify differences among Schizophrenia, bipolar disorder, and healthy control subjects , 2014, Front. Hum. Neurosci..

[16]  Richard J. Davidson,et al.  Experience-Driven Differences in Childhood Cortisol Predict Affect-Relevant Brain Function and Coping in Adolescent Monozygotic Twins , 2016, Scientific Reports.

[17]  Moo K. Chung,et al.  Topological Network Analysis of Electroencephalographic Power Maps , 2017, CNI@MICCAI.

[18]  Arnaud Doucet,et al.  Fast Computation of Wasserstein Barycenters , 2013, ICML.

[19]  Vince D. Calhoun,et al.  Estimation of Dynamic Sparse Connectivity Patterns From Resting State fMRI , 2018, IEEE Transactions on Medical Imaging.

[20]  Huiling Le,et al.  The Fréchet mean shape and the shape of the means , 2000, Advances in Applied Probability.

[21]  Moo K. Chung,et al.  Dynamic Functional Connectivity Using Heat Kernel , 2019, 2019 IEEE Data Science Workshop (DSW).

[22]  S. J. Devlin,et al.  Robust estimation and outlier detection with correlation coefficients , 1975 .

[23]  Moo K. Chung,et al.  Statistical model for dynamically-changing correlation matrices with application to brain connectivity , 2020, Journal of Neuroscience Methods.

[24]  Moo K. Chung,et al.  Computing the Shape of Brain Networks Using Graph Filtration and Gromov-Hausdorff Metric , 2011, MICCAI.

[25]  Geoffrey Ye Li,et al.  Deep Neural Networks for Linear Sum Assignment Problems , 2018, IEEE Wireless Communications Letters.

[26]  Yalin Wang,et al.  Variational Wasserstein Clustering , 2018, ECCV.

[27]  Xiaoyang Guo,et al.  Representations, Metrics and Statistics for Shape Analysis of Elastic Graphs , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[28]  Danielle S Bassett,et al.  Spectral mapping of brain functional connectivity from diffusion imaging , 2018, Scientific Reports.

[29]  David A. Leopold,et al.  Dynamic functional connectivity: Promise, issues, and interpretations , 2013, NeuroImage.

[30]  Stephen M Smith,et al.  Fast transient networks in spontaneous human brain activity , 2014, eLife.

[31]  Moo K. Chung,et al.  Integrative Structural Brain Network Analysis in Diffusion Tensor Imaging , 2017, bioRxiv.

[32]  Jean M. Vettel,et al.  Cliques and cavities in the human connectome , 2016, Journal of Computational Neuroscience.

[33]  Richard M. Karp,et al.  Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems , 1972, Combinatorial Optimization.

[34]  O. Sporns,et al.  Network neuroscience , 2017, Nature Neuroscience.

[35]  Moo K. Chung,et al.  Topological Learning and Its Application to Multimodal Brain Network Integration , 2021, MICCAI.

[36]  François-Joseph Lapointe,et al.  Using the stability of objects to determine the number of clusters in datasets , 2017, Inf. Sci..

[37]  Eswar Damaraju,et al.  Tracking whole-brain connectivity dynamics in the resting state. , 2014, Cerebral cortex.

[38]  R. Ghrist Barcodes: The persistent topology of data , 2007 .

[39]  Moo K. Chung,et al.  Rapid Acceleration of the Permutation Test via Transpositions , 2019, CNI@MICCAI.

[40]  Chin-Hui Lee,et al.  Evaluation of sliding window correlation performance for characterizing dynamic functional connectivity and brain states , 2016, NeuroImage.

[41]  Yalin Wang,et al.  Shape Analysis with Hyperbolic Wasserstein Distance , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[42]  Moo K. Chung,et al.  Statistical and Computational Methods in Brain Image Analysis , 2013 .

[43]  Francesco Pozzi,et al.  Exponential smoothing weighted correlations , 2012 .

[44]  Hernando Ombao,et al.  Topological Data Analysis of Single-Trial Electroencephalographic Signals. , 2018, The annals of applied statistics.

[45]  Gael Varoquaux,et al.  Manifold-regression to predict from MEG/EEG brain signals without source modeling , 2019, NeurIPS.

[46]  Moo K. Chung,et al.  Dynamic Topological Data Analysis for Functional Brain Signals , 2020, 2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops).

[47]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[48]  Julien Rabin,et al.  Wasserstein Barycenter and Its Application to Texture Mixing , 2011, SSVM.

[49]  S. S. Vallender Calculation of the Wasserstein Distance Between Probability Distributions on the Line , 1974 .

[50]  Quanzheng Li,et al.  A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease Progression With MEG Brain Networks , 2020, IEEE Transactions on Biomedical Engineering.

[51]  R. Adler,et al.  Persistent homology for random fields and complexes , 2010, 1003.1001.

[52]  G. Petri,et al.  Homological scaffolds of brain functional networks , 2014, Journal of The Royal Society Interface.

[53]  Moo K. Chung,et al.  Statistical Inference on the Number of Cycles in Brain Networks , 2019, 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019).

[54]  Moo K. Chung,et al.  Persistent Homological Sparse Network Approach to Detecting White Matter Abnormality in Maltreated Children: MRI and DTI Multimodal Study , 2013, MICCAI.

[55]  Moo K. Chung,et al.  Circular Pearson Correlation Using Cosine Series Expansion , 2019, 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019).

[56]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[57]  Bung-Nyun Kim,et al.  Persistent Brain Network Homology From the Perspective of Dendrogram , 2012, IEEE Transactions on Medical Imaging.

[58]  Kwangsun Yoo,et al.  Degree‐based statistic and center persistency for brain connectivity analysis , 2017, Human brain mapping.

[59]  Guillaume Carlier,et al.  Barycenters in the Wasserstein Space , 2011, SIAM J. Math. Anal..