The equation x1x2=x3x4+λ in fields of prime order and applications
暂无分享,去创建一个
[1] D. A. Burgess. Mean values of character sums , 1986 .
[2] Hugh L. Montgomery,et al. Mean values of character sums , 1979 .
[3] Todd Cochrane,et al. The Congruencex1x2≡x3x4(modp), the Equationx1x2≡x3x4, and Mean Values of Character Sums , 1996 .
[4] Terence Tao,et al. A sum-product estimate in finite fields, and applications , 2003, math/0301343.
[5] I. Shparlinski,et al. Distribution of modular inverses and multiples of small integers and the Sato-Tate conjecture on average , 2006, math/0608596.
[6] Estimates for character sums , 1993 .
[7] G. Tenenbaum. Sur la probabilité qu'un entier possède un diviseur dans un intervalle donné , 1984 .
[8] Jean Bourgain,et al. Estimates for the Number of Sums and Products and for Exponential Sums in Fields of Prime Order , 2006 .
[9] Igor E. Shparlinski,et al. DISTRIBUTION OF POINTS ON MODULAR HYPERBOLAS , 2007 .
[10] On the logarithmic factor in error term estimates in certain additive congruence problems , 2005, math/0504280.
[11] G. Harman. Diophantine approximation with square-free integers , 1984, Mathematical Proceedings of the Cambridge Philosophical Society.