Determination of phonon deformation potentials and strain-shift coefficients in Ge-rich Si1−xGex using bulk Ge-rich Si1−xGex crystals and oil-immersion Raman spectroscopy

The strain-free Raman shift of the Ge–Ge mode, , of Ge-rich Si1−xGex (x: Ge fraction) was determined accurately from the bulk Ge-rich Si1−xGex samples fabricated by the Czochralski (Cz) method. Using the obtained , the phonon deformation potentials (PDPs), p and q, and the strain-shift coefficient bLO of isotropic biaxial strained Ge-rich Si1−xGex thin films were extracted by oil-immersion Raman spectroscopy using Raman peak shifts of longitudinal and transverse optical (LO and TO) phonon modes. As a result, it was confirmed that these parameters are almost constant with small variations and that the strain-shift coefficient bLO is in good agreement with ab initio calculations. The parameters determined in this work are essential to realize accurate strain measurements using Raman spectroscopy for Ge-rich Si1−xGex devices.

[1]  Motofumi Suzuki,et al.  Extended Abstract of the Japan Society of Applied Physics , 2019, JSAP-OSA Joint Symposia 2019 Abstracts.

[2]  T. Irisawa,et al.  Tensile strain ultra thin body SiGe on insulator through hetero-layer transfer technique , 2017 .

[3]  Takanobu Watanabe,et al.  Evaluation of controlled strain in silicon nanowire by UV Raman spectroscopy , 2017 .

[4]  K. Nakagawa,et al.  (Invited) Anisotropic Strain Introduction into Si/Ge Hetero Structures , 2016 .

[5]  A. Ogura,et al.  Biaxial stress evaluation in GeSn film epitaxially grown on Ge substrate by oil-immersion Raman spectroscopy , 2016 .

[6]  A. Ogura,et al.  Origin of additional broad peaks in Raman spectra from thin germanium-rich silicon–germanium films , 2016 .

[7]  A. Ogura,et al.  Examination of phonon deformation potentials for accurate strain measurements in silicon–germanium alloys with the whole composition range by Raman spectroscopy , 2016 .

[8]  A. Ogura,et al.  Evaluation of Anisotropic Biaxial Stress in Si1-XGex/Ge Mesa-Structure by Oil-Immersion Raman Spectroscopy , 2015 .

[9]  Jean-Michel Hartmann,et al.  Germanium content and strain in Si1−xGex alloys characterized by Raman spectroscopy , 2014 .

[10]  K. Matsubara,et al.  Rutherford backscattering studies of strain-relaxed SiGe films grown on Si substrate with compositionally graded buffer layers , 2013 .

[11]  S. Kawata,et al.  Stress redistribution in individual ultrathin strained silicon nanowires: a high-resolution polarized Raman study , 2013 .

[12]  A. Ogura,et al.  Investigation of Phonon Deformation Potentials in Si1-xGex by Oil-Immersion Raman Spectroscopy , 2012 .

[13]  A. Ogura,et al.  Evaluation of Anisotropic Strain Relaxation in Strained Silicon-on-Insulator Nanostructure by Oil-Immersion Raman Spectroscopy , 2012 .

[14]  S. Kawata,et al.  Mapping the "forbidden" transverse-optical phonon in single strained silicon (100) nanowire. , 2011, Nano letters.

[15]  N. Taoka,et al.  Highly strained-SiGe-on-insulator p-channel metal-oxide-semiconductor field-effective transistors fabricated by applying Ge condensation technique to strained-Si-on-insulator substrates , 2011 .

[16]  A. Ogura,et al.  Improvement of Spatial Resolution in Raman Spectroscopy Selecting Measurement Area by Opaque Material Deposition , 2011 .

[17]  K. Omote High resolution grazing-incidence in-plane x-ray diffraction for measuring the strain of a Si thin layer , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[18]  T. Tada,et al.  Observation of the forbidden doublet optical phonon in Raman spectra of strained Si for stress analysis , 2010 .

[19]  S. Yamakawa,et al.  Channel strain analysis in high-performance damascene-gate p-metal-oxide-semiconductor field effect transistors using high-spatial resolution Raman spectroscopy , 2010 .

[20]  T. Tada,et al.  Study of stress distribution in a cleaved Si shallow trench isolation structure using confocal micro-Raman system , 2010 .

[21]  A. Ogura,et al.  Transverse-optical phonons excited in Si using a high-numerical-aperture lens , 2010 .

[22]  M. J. Kim,et al.  Shallow trench isolation liners and their role in reducing lattice strains , 2008 .

[23]  S. Sanguinetti,et al.  Raman spectroscopy determination of composition and strain in Si1-xGex/SiSi1-xGex/Si heterostructures , 2008 .

[24]  K. Nakagawa,et al.  Development of Thin SiGe Relaxed Layers with High-Ge Composition by Ion Implantation Method and Application to Strained Ge Channels , 2008 .

[25]  S. Sanguinetti,et al.  Phonon strain shift coefficients in Si1−xGex alloys , 2008 .

[26]  A. Goñi,et al.  Composition dependence of the phonon strain shift coefficients of SiGe alloys revisited , 2008 .

[27]  N. Sugiyama,et al.  Strain analysis in ultrathin SiGe-on-insulator layers formed from strained Si-on-insulator substrates by Ge-condensation process , 2007 .

[28]  R. Fortunier,et al.  Strain field in silicon on insulator lines using high resolution x-ray diffraction , 2007 .

[29]  Hanfei Yan,et al.  Mapping local strain in thin film/substrate systems using x-ray microdiffraction topography , 2007 .

[30]  T. Tezuka,et al.  High-Performance Uniaxially Strained SiGe-on-Insulator pMOSFETs Fabricated by Lateral-Strain-Relaxation Technique , 2006, IEEE Transactions on Electron Devices.

[31]  T. Mitani,et al.  Raman investigation of strain in Si∕SiGe heterostructures: Precise determination of the strain-shift coefficient of Si bands , 2006 .

[32]  Satoshi Tanaka,et al.  UV-Raman Spectroscopy System for Local and Global Strain Measurements in Si , 2005 .

[33]  I. Yonenaga Growth and fundamental properties of SiGe bulk crystals , 2005 .

[34]  Ingrid De Wolf,et al.  Strain determination in silicon microstructures by combined convergent beam electron diffraction, process simulation, and micro-Raman spectroscopy , 2003 .

[35]  Shinichi Takagi,et al.  Ultrathin body SiGe-on-insulator pMOSFETs with high-mobility SiGe surface channels , 2003 .

[36]  David J. Lockwood,et al.  Strain in coherent-wave SiGe/Si superlattices , 2000 .

[37]  Surya R. Kalidindi,et al.  Determination of unknown stress states in silicon wafers using microlaser Raman spectroscopy , 1997 .

[38]  Ingrid De Wolf,et al.  Stress measurements in silicon devices through Raman spectroscopy: Bridging the gap between theory and experiment , 1996 .

[39]  Fourcade,et al.  Phonon strain-shift coefficients of Si1-xGex grown on Ge(001). , 1996, Physical review. B, Condensed matter.

[40]  T. Fukuda,et al.  Czochralski growth of Ge1 − xSix alloy crystals , 1995 .

[41]  G. Katagiri,et al.  Characterization of anisotropic stress around Si trenches by polarized Raman spectroscopy , 1995 .

[42]  F. H. Dacol,et al.  Measurements of alloy composition and strain in thin GexSi1−x layers , 1994 .

[43]  Sui,et al.  Effect of strain on phonons in Si, Ge, and Si/Ge heterostructures. , 1993, Physical review. B, Condensed matter.

[44]  Fred H. Pollak,et al.  Effect of static uniaxial stress on the Raman spectrum of silicon , 1993 .

[45]  Lockwood,et al.  Strain-shift coefficients for phonons in Si1-xGex epilayers on silicon. , 1992, Physical review. B, Condensed matter.

[46]  Alexei A. Maradudin,et al.  A lattice theory of morphic effects in crystals of the diamond structure , 1970 .

[47]  J. Dismukes,et al.  Lattice Parameter and Density in Germanium-Silicon Alloys1 , 1964 .