Determinants, Paths, and Plane Partitions

In studying representability of matroids, Lindström [42] gave a combinatorial interpretation to certain determinants in terms of disjoint paths in digraphs. In a previous paper [25], the authors applied this theorem to determinants of binomial coefficients. Here we develop further applications. As in [25], the paths under consideration are lattice paths in the plane. Our applications may be divided into two classes: first are those in which a determinant is shown to count some objects of combinatorial interest, and second are those which give a combinatorial interpretation to some numbers which are of independent interest. In the first class are formulas for various types of plane partitions, and in the second class are combinatorial interpretations for Fibonomial coefficients, Bernoulli numbers, and the less-known Salié and Faulhaber numbers (which arise in formulas for sums of powers, and are closely related to Genocchi and Bernoulli numbers). Other enumerative applications of disjoint paths and related methods can be found in [14], [26], [19], [51–54], [57], and [67].

[1]  C. Jacobi,et al.  De binis quibuslibet functionibus homogeneis secundi ordinis per substitutiones lineares in alias binas tranformandis, quae solis quadratis variabilium constant; una cum variis theorematis de tranformatione etdeterminatione integralium multiplicium. , 1834 .

[2]  Amitai Regev,et al.  Hook young diagrams with applications to combinatorics and to representations of Lie superalgebras , 1987 .

[3]  Richard P. Stanley,et al.  Binomial Posets, Möbius Inversion, and Permutation Enumeration , 1976, J. Comb. Theory A.

[4]  George E. Andrews,et al.  Plane partitions (III): The weak Macdonald conjecture , 1979 .

[5]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[6]  David P. Robbins,et al.  Enumeration of a symmetry class of plane partitions , 1987, Discret. Math..

[7]  Gérard Viennot,et al.  A Combinatorial Interpretation of the Seidel Generation of Genocchi Numbers , 1980 .

[8]  Gérard Viennot,et al.  Enumeration of certain young tableaux with bounded height , 1986 .

[9]  Richard P. Stanley,et al.  The Conjugate Trace and Trace of a Plane Partition , 1973, J. Comb. Theory, Ser. A.

[10]  K. V. Menon Note on some determinants of q-binomial numbers , 1986, Discret. Math..

[11]  Some determinants of q-binomial coefficients. , 1967 .

[12]  W. H. Mills,et al.  Proof of the Macdonald conjecture , 1982 .

[13]  C. Schensted Longest Increasing and Decreasing Subsequences , 1961, Canadian Journal of Mathematics.

[14]  Ian P. Goulden Quadratic Forms of Skew Schur Functions , 1988, Eur. J. Comb..

[15]  I. Gessel,et al.  Binomial Determinants, Paths, and Hook Length Formulae , 1985 .

[16]  J. Cooper TOTAL POSITIVITY, VOL. I , 1970 .

[17]  I. Gessel Generating functions and enumeration of sequences. , 1977 .

[18]  A. P. Hillman,et al.  Reverse Plane Partitions and Tableau Hook Numbers , 1976, J. Comb. Theory A.

[19]  Potenzsummenformeln im 17. Jahrhundert , 1983 .

[20]  Richard P. Stanley,et al.  Unimodality and Lie superalgebras , 1985 .

[21]  Philip C. Tonne A regular determinant of binomial coefficients , 1973 .

[22]  Jeffrey B. Remmel The combinatorics of (k,`)-Hook Schur functions , 1983 .

[23]  Robert A. Sulanke,et al.  A determinant for q-counting n-dimensional lattice paths , 1990, Discret. Math..

[24]  W. Ledermann Introduction to Group Characters , 1977 .

[25]  I. J. Schoenberg On smoothing operations and their generating functions , 1953 .

[26]  A. W. F. Edwards,et al.  A Quick Route to Sums of Powers , 1986 .

[27]  Michelle L. Wachs,et al.  Flagged Schur Functions, Schubert Polynomials, and Symmetrizing Operators , 1985, J. Comb. Theory, Ser. A.

[28]  S. Karlin Coincident Probabilities and Applications in Combinatorics , 1988 .

[29]  J. Remmel Bijective proofs of formulae for the number of standard Yound tableaux , 1982 .

[30]  J. Remmel,et al.  A bijective proof of the generating function for the number of reverse plane partitions via lattice paths , 1984 .

[31]  Albert Edrei,et al.  Proof of a Conjecture of Schoenberg on the Generating Function of a Totally Positive Sequence , 1953, Canadian Journal of Mathematics.

[32]  Glan Thomas Further results on baxter sequences and generalized Schur functions , 1977 .

[33]  E. Gansner,et al.  Matrix correspondences and the enumeration of plane partitions. , 1978 .

[34]  Germain Kreweras,et al.  Sur une classe de problèmes de dénombrement liés au treillis des partitions des entiers , 1965 .

[35]  T. W. Chaundy,et al.  THE UNRESTRICTED PLANE PARTITION , 1932 .

[36]  Toshihiro Watanabe,et al.  On the Littlewood-Richardson rule in terms of lattice path combinatorics , 1988, Discret. Math..

[37]  C. Jacobi,et al.  De usu legitimo formulae summatoriae Maclaurinianae. , 1834 .

[38]  P. W. Kasteleyn The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice , 1961 .

[39]  Dale Raymond Worley,et al.  A theory of shifted Young tableaux , 1984 .

[40]  Leonard Carlitz,et al.  The coefficients of cosh x/cos x , 1965 .

[41]  Jeffrey B. Remmel,et al.  A Bijective Proof of the Hook Formula for the Number of Column Strict Tableaux with Bounded Entries , 1983, Eur. J. Comb..

[42]  Bruce E. Sagan,et al.  Inductive and injective proofs of log concavity results , 1988, Discret. Math..

[43]  Edward A. Bender,et al.  Enumeration of Plane Partitions , 1972, J. Comb. Theory A.

[44]  A. Ostrowski,et al.  On some determinants with combinatorial numbers. , 1964 .

[45]  George E. Andrews,et al.  The equivalence of the Bender-Knuth and MacMahon conjectures , 1977 .

[46]  Robert A. Proctor Shifted plane partitions of trapezoidal shape , 1983 .