Active and passive chalcogenide glass optical fibers for IR applications: a review

Chalcogenide glass fibers based on sulfide, selenide, telluride and their rare earth doped compositions are being actively investigated worldwide. Great strides have been made in reducing optical losses using improved chemical purification techniques, but further improvements are needed in both purification and fiberization technology to attain the theoretical optical losses. Despite these problems, current single mode and multimode chalcogenide glass fibers are enabling numerous applications. Some of these applications include laser power delivery, chemical sensing, imaging, scanning near field microscopy/spectroscopy, fiber IR sources/lasers, amplifiers and optical switches. The authors assert that the research and development of chalcogenide glasses will grow in the foreseeable future, especially with respect to improvements in the optical quality of the fibers and the performance of the fibers in existing and future applications.

[1]  Ishwar D. Aggarwal,et al.  Development of chalcogenide glass fiber optics at NRL , 1997 .

[2]  A. Bornstein,et al.  Laser emission cross-section and threshold power for laser operation at 1077 nm and 1370 nm; chalcogenide mini-lasers doped by Nd3+ , 1982 .

[3]  Jasbinder S. Sanghera,et al.  Rare-earth-doped glass fibers as infrared sources for IRSS , 1998, Defense, Security, and Sensing.

[4]  David N. Payne,et al.  Rare-earth doped chalcogenide glass fibre laser , 1997 .

[5]  J. Sanghera,et al.  Spectroscopy of the IR transitions in Pr3+ doped heavy metal selenide glasses. , 1997, Optics express.

[6]  Jasbinder S. Sanghera,et al.  Fused taper infrared optical fiber couplers in chalcogenide glass , 1997 .

[7]  A. Villeneuve,et al.  Comparison of nonlinear optical properties of sulfide glasses in bulk and thin film form , 1998 .

[8]  H. Aoki,et al.  Efficient amplification at 1.3 m in a Pr3 + -doped Ga-Na-S fiber , 1997 .

[9]  Philip Huie,et al.  Scanning near-field infrared microscope with a free electron laser illumination source , 1996, Optics & Photonics.

[10]  Hiroyuki Nasu,et al.  Optical third-harmonic generation from some high-index glasses , 1989 .

[11]  Takashi Yamagishi,et al.  Recent advances and trends in chalcogenide glass fiber technology: a review , 1992 .

[12]  J. Sanghera,et al.  Effect of scattering centers on the optical loss of As2S3 glass fibers in the infrared , 1994 .

[13]  J. Temmyo,et al.  15.1-dB-gain Pr/sup 3+/-doped fluoride fiber amplifier pumped by high-power laser-diode modules , 1992, IEEE Photonics Technology Letters.

[14]  Ishwar D. Aggarwal,et al.  Chalcogenide fibers deliver high IR power , 1996 .

[15]  Hiroshi Suto,et al.  Chalcogenide fiber bundle for 3D spectroscopy , 1997 .

[16]  R. Reisfeld,et al.  Fluorescence of Er3+ doped La2S3 · 3 Ga2S3 glasses☆ , 1978 .

[17]  G. Fish,et al.  Demonstration of InP-InGaAsP vertical grating-assisted codirectional coupler filters and receivers with tapered coupling coefficient distributions , 1997, IEEE Photonics Technology Letters.

[18]  M. Vermelho,et al.  Efficient second-harmonic generation in praseodymium-doped Ga:La:S glass for 1.3-μm optical fiber amplifiers , 1996, IEEE Photonics Technology Letters.

[19]  David N. Payne,et al.  Spectral properties of Er 3+-doped gallium lanthanum sulphide glass , 1996 .

[20]  R. Reisfeld,et al.  Absorption and emission spectra in chalcogenide glass of the composition 0.7Ga2S3·0.27La2S3·0.03Nd2S3 , 1977 .

[21]  S. Sakuragi,et al.  Infrared image guide with bundled As-S glass fibers. , 1985, Applied optics.

[22]  T. Kanamori,et al.  Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber , 1992, IEEE Photonics Technology Letters.

[23]  J. Gilligan,et al.  Singlemode chalcogenide fiber infrared SNOM probes , 1999 .

[24]  Peter G. Kazansky,et al.  Glass Fibre Poling and Applications , 1997, Photosensitivity and Quadratic Nonlinearity in Glass Waveguides: Fundamentals and Applications.

[25]  Terutoshi Kanamori,et al.  Chalcogenide glass fibers for mid-infrared transmission , 1984 .

[26]  S. G. Bishop,et al.  PHOTOLUMINESCENCE STUDIES OF BROADBAND EXCITATION MECHANISMS FOR DY3+ EMISSION IN DY:AS12GE33SE55 GLASS , 1996 .

[27]  B. Rigas,et al.  Human colon adenocarcinoma cell lines display infrared spectroscopic features of malignant colon tissues. , 1992, Cancer research.

[28]  T. Ueda,et al.  Measurement of Grinding Temperature of Ceramics Using Infrared Radiation Pyrometer with Optical Fiber , 1992 .

[29]  Takashi Yamagishi,et al.  Coherent infrared fiber image bundle , 1991 .

[30]  J. Nishii,et al.  Chalcogenide glass fiber with a core-cladding structure. , 1989, Applied optics.

[31]  G. Sigel,et al.  Remote fiber-optic chemical sensing using evanescent-wave interactions in chalcogenide glass fibers. , 1991, Applied optics.

[32]  Jacques Lucas,et al.  Low loss optical fibres of the tellurium halide-based glasses, the TeX glasses , 1993 .

[33]  M. Churbanov,et al.  Recent advances in preparation of high-purity chalcogenide glasses in the USSR , 1992 .

[34]  Ishwar D. Aggarwal,et al.  Infrared Evanescent Absorption Spectroscopy of Toxic Chemicals Using Chalcogenide Glass Fibers , 1995 .

[35]  Itaru Yokohama,et al.  Fabrication of Bragg grating in chalcogenide glass fibre using the transverse holographic method , 1996 .

[36]  D. Machewirth,et al.  Pr3+-doped Ge–S–I glasses as candidate materials for 1.3 μm optical fiber amplifiers , 1997 .

[37]  Y. Ohishi,et al.  Optical amplification with neodymium-doped chalcogenide glass fiber , 1997 .

[38]  Ishwar D. Aggarwal,et al.  Fabrication of low-loss IR-transmitting Ge/sub 30/As/sub 10/Se/sub 30/Te/sub 30/ glass fibers , 1994 .

[39]  David N. Payne,et al.  Low phonon-energy glasses for efficient 1.3 mu m optical fibre amplifiers , 1993 .

[40]  J. Heo,et al.  Mid-infrared light emission characteristics of Ho3+-doped chalcogenide and heavy-metal oxide glasses , 1995 .

[41]  J. Heo,et al.  Multiphonon and cross relaxation phenomena in GeAs(or Ga)S glasses doped with Tm3 , 1996 .

[42]  N. S. Kapany,et al.  Recent developments in infrared fiber optics , 1965 .