Dissipative solitons, wave asymmetry and dynamical ratchets

Unidirectional solitonic wave-mediated transport is shown to be possible for a class of anharmonic lattice problems where, due to wave asymmetry, the waves can be used as a traveling periodic ratchet. Using a (mesoscopic) probabilistic description we have assessed the role of both viscous friction and temperature in both the direction of transport and its quantitative features. No asymmetry is required on the potential. Furthermore its actual form and even that of the periodic wave, save its asymmetry, play no significant role in the results obtained and hence they exhibit rather universal value.

[1]  Werner Ebeling,et al.  Nonlinear Ionic Excitations, Dynamic Bound States, and Nonlinear Currents in a One‐dimensional Plasma , 2005 .

[2]  Morikazu Toda,et al.  Theory Of Nonlinear Lattices , 1981 .

[3]  Werner Ebeling,et al.  Dissipative solitons and Complex currents in Active Lattices , 2006, Int. J. Bifurc. Chaos.

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  F. Schweitzer Brownian Agents and Active Particles , 2003, Springer Series in Synergetics.

[6]  Paul Horowitz,et al.  The Art of Electronics , 1980 .

[7]  Manuel G. Velarde,et al.  A prototype Helmholtz–Thompson nonlinear oscillator , 1992 .

[8]  Balth. van der Pol,et al.  VII. Forced oscillations in a circuit with non-linear resistance. (Reception with reactive triode) , 1927 .

[9]  Werner Ebeling,et al.  On soliton-Mediated Fast Electric conduction in a Nonlinear Lattice with Morse Interactions , 2006, Int. J. Bifurc. Chaos.

[10]  John Waldron,et al.  The Langevin Equation , 2004 .

[11]  Stokes' Drift: A Rocking Ratchet , 1999, cond-mat/9908338.

[12]  Werner Ebeling,et al.  Nonlinear excitations and electric transport in dissipative Morse-Toda lattices , 2006 .

[13]  Werner Ebeling,et al.  Complex Motion of Brownian Particles with Energy Depots , 1998 .

[14]  J. Thompson,et al.  Nonlinear Dynamics and Chaos , 2002 .

[15]  Werner Ebeling,et al.  Thermodynamics and phase transitions in dissipative and active Morse chains , 2005 .

[16]  Werner Ebeling,et al.  Directed motion of Brownian particles with internal energy depot , 1999 .

[17]  Volker Heine,et al.  The Pseudopotential Concept , 1970 .

[18]  Brownian motors: solitary wave and efficiency , 2000 .

[19]  P. Hänggi,et al.  Brownian motion exhibiting absolute negative mobility. , 2002, Physical review letters.

[20]  Philippe Choquard,et al.  The anharmonic crystal , 1967 .

[21]  Frank Schweitzer,et al.  Brownian Agents and Active Particles: Collective Dynamics in the Natural and Social Sciences , 2003 .

[22]  Balth. van der Pol Jun. LXXXVIII. On “relaxation-oscillations” , 1926 .

[23]  Bier,et al.  Fluctuation driven ratchets: Molecular motors. , 1994, Physical review letters.

[24]  M. Magnasco,et al.  Forced thermal ratchets. , 1993, Physical review letters.

[25]  G. Slater,et al.  Bidirectional Transport of Polyelectrolytes Using Self-Modulating Entropic Ratchets , 1997 .

[26]  Yu-Xiao Li Brownian motors possessing internal degree of freedom , 1998 .

[27]  Kalvis M. Jansons G.D. Lythe STOCHASTIC STOKES DRIFT , 1998 .

[28]  James Lighthill,et al.  Waves In Fluids , 1966 .

[29]  Werner Ebeling,et al.  On the Possibility of Electric conduction Mediated by dissipative solitons , 2005, Int. J. Bifurc. Chaos.

[30]  William T. Coffey,et al.  Crossover formulas in the kramers theory of thermally activated escape rates—application to spin systems , 2007 .

[31]  Werner Ebeling,et al.  Statistical Thermodynamics and Stochastic Theory of Nonequilibrium Systems , 2005 .

[32]  A. Ajdari,et al.  Directional motion of brownian particles induced by a periodic asymmetric potential , 1994, Nature.

[33]  R. Hirota,et al.  Theoretical and experimental studies of lattice solitons in nonlinear lumped networks , 1973 .

[34]  A. Ajdari,et al.  Current Reversal in Asymmetric Pumping , 1995 .

[35]  P. Reimann Brownian motors: noisy transport far from equilibrium , 2000, cond-mat/0010237.