Plant host relationships of three lineages of the gall-inducing fly Fergusonina Malloch (Diptera: Fergusoninidae) on Eucalyptus L’Hérit.

[1]  Laura J. Pollock,et al.  Phylogenetic approaches reveal biodiversity threats under climate change , 2016 .

[2]  D. Yeates,et al.  Larval dorsal shield morphology is highly correlated with gall type in the enigmatic gall-forming fly, Fergusonina Malloch (Diptera : Fergusoninidae) , 2016, Australian Journal of Zoology.

[3]  N. Châline,et al.  Time till death affects spider mobility and web-building behavior during web construction in an orb-web spider , 2016, Current zoology.

[4]  S. Ho,et al.  Interpreting the modern distribution of Myrtaceae using a dated molecular phylogeny. , 2015, Molecular phylogenetics and evolution.

[5]  D. Yeates,et al.  Are the shoot bud galls of Fergusonina Malloch, 1924 (Diptera: Fergusoninidae) founded by multiple mothers? , 2015 .

[6]  R. Giblin-Davis,et al.  An emerging example of tritrophic coevolution between flies (Diptera: Fergusoninidae) and nematodes (Nematoda: Neotylenchidae) on Myrtaceae host plants , 2014 .

[7]  D. Nicolle,et al.  Atlas of Leaf Venation and Oil Gland Patterns in the Eucalypts , 2013 .

[8]  R. Giblin-Davis,et al.  Sex‐limited association of Fergusobia nematodes with female Fergusonina flies in a unique Australasian mutualism (Nematoda: Neotylenchidae; Diptera: Fergusoninidae) , 2013 .

[9]  T. Giraud,et al.  Cospeciation vs host-shift speciation: methods for testing, evidence from natural associations and relation to coevolution. , 2013, The New phytologist.

[10]  P. Pratt,et al.  Physiological host range of two highly specialised mutualistic symbiotes: the fly Fergusonina turneri and its obligate nematode Fergusobia quinquenerviae, potential biocontrol agents of Melaleuca quinquenervia , 2013 .

[11]  R. Lanfear,et al.  Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. , 2012, Molecular biology and evolution.

[12]  S. Ho,et al.  Are pollen fossils useful for calibrating relaxed molecular clock dating of phylogenies? A comparative study using Myrtaceae. , 2012, Molecular phylogenetics and evolution.

[13]  Maxim Teslenko,et al.  MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.

[14]  D. Yeates,et al.  Three new species of Fergusonina Malloch gall-flies (Diptera: Fergusoninidae) from terminal leaf bud galls on Eucalyptus (Myrtaceae) in south-eastern Australia. , 2011 .

[15]  Markus Friedrich,et al.  Episodic radiations in the fly tree of life , 2011, Proceedings of the National Academy of Sciences.

[16]  R. Giblin-Davis,et al.  Nematodes from galls on Myrtaceae. I. Fergusobia/Fergusonina galls on Corymbia spp., with re-description of F. magna and notes on its phylogenetic relationships , 2010 .

[17]  R. Giblin-Davis,et al.  The nematode genus Fergusobia (Nematoda: Neotylenchidae): molecular phylogeny, descriptions of clades and associated galls, host plants and Fergusonina fly larvae , 2010 .

[18]  T. Köllner,et al.  The molecular basis of host plant selection in Melaleuca quinquenervia by a successful biological control agent. , 2010, Phytochemistry.

[19]  Ran Libeskind-Hadas,et al.  Jane: a new tool for the cophylogeny reconstruction problem , 2010, Algorithms for Molecular Biology.

[20]  G. Taylor,et al.  New species of gall flies (Diptera: Fergusoninidae) and an associated nematode (Tylenchida: Neotylenchidae) from flower bud galls on Corymbia (Myrtaceae) , 2008 .

[21]  R. Giblin-Davis,et al.  Molecular phylogenetics and the evolution of host plant associations in the nematode genus Fergusobia (Tylenchida: Fergusobiinae). , 2007, Molecular phylogenetics and evolution.

[22]  G. Taylor,et al.  First record of Fergusonina (Diptera: Fergusoninidae) and associated Fergusobia (Tylenchida: Neotylenchidae) forming galls on Metrosideros (Myrtaceae) from New Zealand , 2007 .

[23]  G. Wheeler Chemotype variation of the weed Melaleuca quinquenervia influences the biomass and fecundity of the biological control agent Oxyops vitiosa , 2006 .

[24]  Nikos Papadopoulos,et al.  Age-specific and lifetime behavior patterns in Drosophila melanogaster and the Mediterranean fruit fly, Ceratitis capitata , 2006, Experimental Gerontology.

[25]  G. Wheeler,et al.  Secondary metabolite variation affects the oviposition preference but has little effect on the performance of Boreioglycaspis melaleucae: A biological control agent of Melaleuca quinquenervia , 2005 .

[26]  R. Giblin-Davis,et al.  Phylogenetic Relationships, Species Limits, and Host Specificity of Gall-Forming Fergusonina Flies (Diptera: Fergusoninidae) Feeding on Melaleuca (Myrtaceae) , 2004 .

[27]  R. Giblin-Davis,et al.  Histological comparisons of fergusobia/fergusonina-induced galls on different myrtaceous hosts. , 2004, Journal of nematology.

[28]  M. Inbar,et al.  The evolution of host plant manipulation by insects: molecular and ecological evidence from gall-forming aphids on Pistacia. , 2004, Molecular phylogenetics and evolution.

[29]  R. Giblin-Davis,et al.  The biology and associations of Fergusobia (Nematoda) from the Melaleuca leucadendra-complex in eastern Australia. , 2004 .

[30]  G. Taylor Revision of Fergusonina Malloch gall flies (Diptera : Fergusoninidae) from Melaleuca (Myrtaceae) , 2004 .

[31]  Coevolution between Fergusobia and Fergusonina mutualists , 2004, Proceedings of the Fourth International Congress of Nematology, 8-13 June 2002, Tenerife, Spain.

[32]  R. Giblin-Davis,et al.  Fergusobia/Fergusonina-induced Shoot Bud Gall Development on Melaleuca quinquenervia. , 2001, Journal of nematology.

[33]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[34]  M. Charleston,et al.  Jungles: a new solution to the host/parasite phylogeny reconciliation problem. , 1998, Mathematical biosciences.

[35]  S. Hartley The chemical composition of plant galls: are levels of nutrients and secondary compounds controlled by the gall-former? , 1998, Oecologia.

[36]  S. Larsson,et al.  Oviposition mistakes in herbivorous insects: confusion or a step towards a new host plant? , 1995 .

[37]  J. Thompson,et al.  The Coevolutionary Process , 1994 .

[38]  B. Crespi,et al.  Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers , 1994 .

[39]  J. Lawton,et al.  Host-plant manipulation by gall-insects : a test of the nutrition hypothesis , 1992 .

[40]  L. Johnson,et al.  New taxa and combinations in Eucalyptus and Angophora (Myrtaceae) , 1990 .

[41]  J. Lawton,et al.  INSECTS ON PLANTS. COMMUNITY PATTERNS AND MECHANISMS. , 1987 .

[42]  Jean Meyer Plant Galls and Gall Inducers , 1987 .

[43]  K. Harris First record of Fergusoninidae (Diptera: Schizophora) outside Australia: a new species of Fergusonina on Syzygium in India , 1982 .

[44]  T. Whiffin Analysis of hybridization between Eucalyptus pauciflora Sieber ex Spreng. and E. radiata Sieber ex DC. (Myrtaceae) , 1981 .

[45]  R. Giblin-Davis,et al.  Galling problems – the Fergusobia nematode/Fergusonina fly mutualism on myrtaceous hosts , 2016 .

[46]  E. Head Ecology of the Fergusonina fly and Fergusobia nematode gall association in South Australia. , 2008 .

[47]  G. Taylor,et al.  Entomophilic nematode models for studying biodiversity and cospeciation , 2004 .

[48]  M. Purcell,et al.  Observations on the development and parasitoids of Fergusonina/Fergusobia galls on Melaleuca quinquenervia (Myrtaceae) in Australia , 2001 .

[49]  F. Ronquist,et al.  EVOLUTION OF THE GALL WASP–HOST PLANT ASSOCIATION , 2001 .

[50]  A. Austin,et al.  Biology of the eucalypt gall-forming fly, Fergusonina flavicornis Malloch (Diptera: Fergusoninidae) and its associated hymenopterans in South Australia, with a description of a new species of Bracon (Hymenoptera: Braconidae). , 1996 .

[51]  M. Siddiqi,et al.  Fergusobia brevicauda sp. n. and F. philippinensis sp. n. (Nematoda: Hexatylina) from Eucalyptus deglupta. , 1994 .

[52]  M. Williams Plant galls : organisms, interactions, populations , 1994 .

[53]  Timothy P. Craig,et al.  Host shifts and speciation in gall-forming insects , 1994 .

[54]  D. Ashton,et al.  Gall-forming insects concentrate on hybrid phenotypes of Eucalyptus hosts , 1994 .

[55]  J. D. Shorthouse,et al.  Biology of insect-induced galls , 1992 .

[56]  T. Whiffin,et al.  Chemical and morphological variation within a population of Eucalyptus radiata (Myrtaceae) exhibiting leaf volatile oil chemical forms , 1992 .

[57]  A. E. Weis,et al.  Nutritional ecology of arthropod gall makers , 1987 .

[58]  S. Tavaré Some probabilistic and statistical problems in the analysis of DNA sequences , 1986 .

[59]  M. Brooker,et al.  Forest Trees of Australia , 1984 .

[60]  W. R. Nickle,et al.  On the classification and life history of Fergusobia curriei (Spizaerulariidae: Nematoda). , 1968 .

[61]  L. Pryor Species Distribution and Association in Eucalyptus , 1959 .

[62]  G. Currie Galls on Eucalyptus trees. A new type of association between flies and nematodes , 1937 .

[63]  A. Tonnoir Revision of the genus Fergusonina Mallp lDipterac Agromyzidaer , 1937 .