Improving stability of stabilized and multiscale formulations in flow simulations at small time steps

Abstract The objective of this paper is to show that use of the element-vector-based definition of stabilization parameters, introduced in [T.E. Tezduyar, Computation of moving boundaries and interfaces and stabilization parameters, Int. J. Numer. Methods Fluids 43 (2003) 555–575; T.E. Tezduyar, Y. Osawa, Finite element stabilization parameters computed from element matrices and vectors, Comput. Methods Appl. Mech. Engrg. 190 (2000) 411–430], circumvents the well-known instability associated with conventional stabilized formulations at small time steps. We describe formulations for linear advection–diffusion and incompressible Navier–Stokes equations and test them on three benchmark problems: advection of an L-shaped discontinuity, laminar flow in a square domain at low Reynolds number, and turbulent channel flow at friction-velocity Reynolds number of 395.

[1]  Pavel B. Bochev,et al.  On inf-sup stabilized finite element methods for transient problems , 2004 .

[2]  Tayfun E. Tezduyar,et al.  Finite element stabilization parameters computed from element matrices and vectors , 2000 .

[3]  Isaac Harari,et al.  Stability of semidiscrete formulations for parabolic problems at small time steps , 2004 .

[4]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[5]  R. Codina,et al.  Time dependent subscales in the stabilized finite element approximation of incompressible flow problems , 2007 .

[6]  Thomas J. R. Hughes,et al.  Large eddy simulation of turbulent channel flows by the variational multiscale method , 2001 .

[7]  T. Hughes,et al.  Large Eddy Simulation and the variational multiscale method , 2000 .

[8]  L. Catabriga COMPRESSIBLE FLOW SUPG STABILIZATION PARAMETERS COMPUTED FROM ELEMENT-EDGE MATRICES , 2004 .

[9]  Victor M. Calo,et al.  YZβ discontinuity capturing for advection‐dominated processes with application to arterial drug delivery , 2007 .

[10]  Alvaro L. G. A. Coutinho,et al.  Compressible Flow SUPG Stabilization Parameters Computed from Degree-of-freedom Submatrices , 2006 .

[11]  Pavel B. Bochev,et al.  On stabilized finite element methods for the Stokes problem in the small time step limit , 2007 .

[12]  Thomas J. R. Hughes,et al.  The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence , 2001 .

[13]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[14]  G. Hulbert,et al.  A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method , 2000 .

[15]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[16]  Tayfun E. Tezduyar,et al.  Discontinuity-capturing finite element formulations for nonlinear convection-diffusion-reaction equations , 1986 .

[17]  Thomas J. R. Hughes,et al.  A boundary integral modification of the Galerkin least squares formulation for the Stokes problem , 1994 .

[18]  Thomas J. R. Hughes,et al.  Energy transfers and spectral eddy viscosity in large-eddy simulations of homogeneous isotropic turbulence: Comparison of dynamic Smagorinsky and multiscale models over a range of discretizations , 2004 .

[19]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[20]  Thomas J. R. Hughes,et al.  Encyclopedia of computational mechanics , 2004 .

[21]  Victor M. Calo,et al.  The role of continuity in residual-based variational multiscale modeling of turbulence , 2007 .

[22]  John Kim,et al.  DIRECT NUMERICAL SIMULATION OF TURBULENT CHANNEL FLOWS UP TO RE=590 , 1999 .

[23]  Isaac Harari,et al.  Semidiscrete formulations for transient transport at small time steps , 2007 .

[24]  Alvaro L. G. A. Coutinho,et al.  Compressible flow SUPG parameters computed from element matrices , 2005 .

[25]  Thomas J. R. Hughes,et al.  Multiscale and Stabilized Methods , 2007 .

[26]  T. Hughes,et al.  Sensitivity of the scale partition for variational multiscale LES of channel flow , 2004 .

[27]  Victor M. Calo,et al.  Residual-based multiscale turbulence modeling: Finite volume simulations of bypass transition , 2005 .

[28]  Jurijs Bazilevs,et al.  Isogeometric analysis of turbulence and fluid -structure interaction , 2006 .

[29]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics. X - The compressible Euler and Navier-Stokes equations , 1991 .

[30]  Tayfun E. Tezduyar,et al.  Finite Element Methods for Fluid Dynamics with Moving Boundaries and Interfaces , 2004 .

[31]  Thomas J. R. Hughes,et al.  A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems , 1986 .

[32]  Thomas J. R. Hughes,et al.  A new finite element formulation for computational fluid dynamics: IX. Fourier analysis of space-time Galerkin/least-squares algorithms , 1991 .

[33]  Giancarlo Sangalli,et al.  Variational Multiscale Analysis: the Fine-scale Green's Function, Projection, Optimization, Localization, and Stabilized Methods , 2007, SIAM J. Numer. Anal..

[34]  Claes Johnson Numerical solution of partial differential equations by the finite element method , 1988 .

[35]  Thomas J. R. Hughes,et al.  Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations , 1984 .

[36]  Tayfun E. Tezduyar,et al.  Stabilization and shock-capturing parameters in SUPG formulation of compressible flows , 2004 .

[37]  T. Tezduyar Computation of moving boundaries and interfaces and stabilization parameters , 2003 .

[38]  Victor M. Calo,et al.  Weak Dirichlet Boundary Conditions for Wall-Bounded Turbulent Flows , 2007 .

[39]  Thomas J. R. Hughes,et al.  Sensitivity of the scale partition for variational multiscale large-eddy simulation of channel flow , 2004 .

[40]  T. Hughes,et al.  Variational and Multiscale Methods in Turbulence , 2005 .

[41]  G. Houzeaux,et al.  A variational subgrid scale model for transient incompressible flows , 2008 .

[42]  T. Hughes,et al.  Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes , 2010 .