Faster and dynamic algorithms for maximal end-component decomposition and related graph problems in probabilistic verification

We present faster and dynamic algorithms for the following problems arising in probabilistic verification: Computation of the maximal end-component (mec) decomposition of Markov decision processes (MDPs), and of the almost sure winning set for reachability and parity objectives in MDPs. We achieve the following running time for static algorithms in MDPs with graphs of <i>n</i> vertices and <i>m</i> edges: (1) <i>O</i>(<i>m</i> · min{√<i>m, n</i><sup>2/3</sup>}) for the mec decomposition, improving the longstanding <i>O</i>(<i>m·n</i>) bound; (2) <i>O</i>(<i>m·n</i><sup>2/3</sup>) for reachability objectives, improving the previous <i>O</i>(<i>m</i> · √<i>m</i>) bound for <i>m</i> > <i>n</i><sup>4/3</sup>; and (3) <i>O</i>(<i>m</i> · min{ √<i>m,n</i><sup>2/3</sup> } · log(<i>d</i>)) for parity objectives with <i>d</i> priorities, improving the previous <i>O</i>(<i>m</i> · √<i>m</i> · <i>d</i>) bound. We also give incremental and decremental algorithms in linear time for mec decomposition and reachability objectives and <i>O</i>(<i>m</i> · log <i>d</i>) time for parity objectives.

[1]  Uri Zwick,et al.  Improved Dynamic Reachability Algorithms for Directed Graphs , 2008, SIAM J. Comput..

[2]  Krishnendu Chatterjee,et al.  Code aware resource management , 2013, Formal Methods Syst. Des..

[3]  Krishnendu Chatterjee,et al.  Probabilistic Systems with LimSup and LimInf Objectives , 2008, ILC.

[4]  Krishnendu Chatterjee,et al.  Quantitative stochastic parity games , 2004, SODA '04.

[5]  Mihalis Yannakakis,et al.  The complexity of probabilistic verification , 1995, JACM.

[6]  Roberto Segala,et al.  Verification of the randomized consensus algorithm of Aspnes and Herlihy: a case study , 2000, Distributed Computing.

[7]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[8]  Judi Romijn,et al.  Fun with FireWire: Experiences with Verifying the IEEE 1394 Root Contention Protocol , 2001 .

[9]  Marta Kwiatkowska,et al.  Verifying Randomized Distributed Algorithms with PRISM , 2000 .

[10]  R. Bellman,et al.  Dynamic Programming and Markov Processes , 1960 .

[11]  Neil Immerman,et al.  Number of Quantifiers is Better Than Number of Tape Cells , 1981, J. Comput. Syst. Sci..

[12]  Ludwig Staiger,et al.  Ω-languages , 1997 .

[13]  Mariëlle Stoelinga Fun with FireWire: A Comparative Study of Formal Verification Methods Applied to the IEEE 1394 Root Contention Protocol , 2003, Formal Aspects of Computing.

[14]  Krishnendu Chatterjee,et al.  Simple Stochastic Parity Games , 2003, CSL.

[15]  Orna Kupferman,et al.  On the Complexity of Parity Word Automata , 2001, FoSSaCS.

[16]  Robert E. Tarjan,et al.  A Hierarchical Clustering Algorithm Using Strong Components , 1982, Inf. Process. Lett..

[17]  Wolfgang Thomas,et al.  Languages, Automata, and Logic , 1997, Handbook of Formal Languages.

[18]  J. Filar,et al.  Competitive Markov Decision Processes , 1996 .

[19]  Krishnendu Chatterjee,et al.  Measuring and Synthesizing Systems in Probabilistic Environments , 2010, CAV.

[20]  Robert E. Tarjan,et al.  A data structure for dynamic trees , 1981, STOC '81.

[21]  Roberto Segala,et al.  Modeling and verification of randomized distributed real-time systems , 1996 .

[22]  J. Kemeny,et al.  Denumerable Markov chains , 1969 .

[23]  Andrea Bianco,et al.  Model Checking of Probabalistic and Nondeterministic Systems , 1995, FSTTCS.

[24]  L. D. Alfaro The Verification of Probabilistic Systems Under Memoryless Partial-Information Policies is Hard , 1999 .