Optimal design of intermediate reflector layer in micromorph silicon thin-film solar cells

Abstract. An intermediate reflector layer (IRL) serves as a spectrally selective layer between the top amorphous cell and bottom nanocrystalline cell in a micromorph silicon thin-film solar cell. In this paper, an IRL periodic design is proposed to achieve better conversion efficiency using thin active layers. The optically simulated short circuit current reaches 13.62  mA/cm2 and three-dimensional electrical analysis shows a promising result. The design methodology used in this paper can be easily applied to different types of IRL materials and extended to triple thin-films solar cells. Finally, the results are compared with state-of-the-art design and further enhancement factors are discussed.

[1]  Xiao Han,et al.  Fabrication of surface-patterned ZnO thin films using sol–gel methods and nanoimprint lithography , 2011, 1108.3894.

[2]  Carsten Agert,et al.  Simulation of Amorphous and Microcrystalline Thin Film Silicon Solar Cells with Sentaurus TCAD , 2010 .

[3]  Mohamed A. Swillam,et al.  Plasmonic silicon solar cells using titanium nitride: a comparative study , 2014 .

[4]  Christophe Ballif,et al.  Effect of ZnO Layer as Intermediate Reflector in Micromorph Solar Cells , 2005 .

[5]  Pradeep Haldar,et al.  Two-dimensional computer modeling of single junction a-Si:H solar cells , 2009, 2009 34th IEEE Photovoltaic Specialists Conference (PVSC).

[6]  H. Atwater,et al.  Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors , 2009 .

[7]  Ch. Hof,et al.  The "micromorph" solar cell: extending a-Si:H technology towards thin film crystalline silicon , 1996, Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996.

[8]  D. L. Staebler,et al.  Optically induced conductivity changes in discharge‐produced hydrogenated amorphous silicon , 1980 .

[9]  Kimihiko Saito,et al.  High‐efficiency thin‐film silicon solar cells with improved light‐soaking stability , 2013 .

[10]  G. Ozin,et al.  Photonic crystal intermediate reflectors for micromorph solar cells: a comparative study. , 2010, Optics express.

[11]  U. Rau,et al.  Characterization and simulation of a-Si:H/μc-Si:H tandem solar cells , 2011 .

[12]  Diego Caratelli,et al.  3‐D optical modeling of thin‐film silicon solar cells on diffraction gratings , 2013 .

[13]  J. Springer,et al.  TCO and light trapping in silicon thin film solar cells , 2004 .

[14]  Yi Cui,et al.  Light trapping in solar cells: can periodic beat random? , 2012, ACS nano.

[15]  Mohamed A. Swillam,et al.  Silicon solar cell using optimized intermediate reflector layer , 2016, SPIE OPTO.

[16]  Olindo Isabella,et al.  Light management in thin-film silicon solar cells , 2013 .

[17]  Yi Cui,et al.  Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. , 2012, Nano letters.

[18]  Peter Bermel,et al.  Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector , 2008 .

[19]  Janez Krč,et al.  Optical and electrical modeling of thin-film silicon solar cells , 2008 .

[20]  Yoshiaki Kanamori,et al.  Flattened light-scattering substrate in thin film silicon solar cells for improved infrared response , 2011 .

[21]  Oliver Höhn,et al.  Spectrally selective intermediate reflectors for tandem thin-film silicon solar cells , 2013, Optics & Photonics - Solar Energy + Applications.

[22]  W. Warta,et al.  Solar cell efficiency tables (Version 45) , 2015 .

[23]  Albert Polman,et al.  Optimized Spatial Correlations for Broadband Light Trapping Nanopatterns in High Efficiency Ultrathin Film A-si:h Solar Cells , 2022 .

[24]  Stephen J. Fonash,et al.  Homojunction Solar Cells , 2010 .

[25]  Ch. Hof,et al.  MOBILITY LIFETIME PRODUCT : A TOOL FOR CORRELATING A-SI:H FILM PROPERTIES AND SOLAR CELL PERFORMANCES , 1996 .

[26]  Christophe Ballif,et al.  Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells. , 2012, Nano letters.

[27]  Yasha Yi,et al.  Efficiency enhancement in Si solar cells by textured photonic crystal back reflector , 2006 .

[28]  Miro Zeman,et al.  Full‐wave optoelectrical modeling of optimized flattened light‐scattering substrate for high efficiency thin‐film silicon solar cells , 2014 .

[29]  Arvind Shah,et al.  Thin-Film Silicon Solar Cells , 2010 .

[30]  Miro Zeman,et al.  Thin-film silicon-based quadruple junction solar cells approaching 20% conversion efficiency , 2014 .

[31]  Harry A Atwater,et al.  Design Considerations for Plasmonic Photovoltaics , 2010, Advanced materials.