Two-dimensional additive diethylammonium iodide promoting crystal growth for efficient and stable perovskite solar cells

Two-dimensional diethylammonium iodide as an additive to promote crystal growth of perovskite film for efficient and stable perovskite solar cells.

[1]  Chun‐Sing Lee,et al.  Ultraviolet-ozone surface modification for non-wetting hole transport materials based inverted planar perovskite solar cells with efficiency exceeding 18% , 2017 .

[2]  B. Jiang,et al.  High-performance and high-durability perovskite photovoltaic devices prepared using ethylammonium iodide as an additive , 2015 .

[3]  J. Nelson,et al.  On the Differences between Dark and Light Ideality Factor in Polymer:Fullerene Solar Cells , 2013 .

[4]  Mohammad Khaja Nazeeruddin,et al.  One-Year stable perovskite solar cells by 2D/3D interface engineering , 2017, Nature Communications.

[5]  Z. Yin,et al.  Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells , 2016, Nature Energy.

[6]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[7]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[8]  Jinsong Huang,et al.  Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers , 2015 .

[9]  N. Kosugi,et al.  Highly Efficient 2D/3D Hybrid Perovskite Solar Cells via Low‐Pressure Vapor‐Assisted Solution Process , 2018, Advanced materials.

[10]  Yang Yang,et al.  Guanidinium: A Route to Enhanced Carrier Lifetime and Open-Circuit Voltage in Hybrid Perovskite Solar Cells. , 2016, Nano letters.

[11]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[12]  T. Ma,et al.  CH3NH3SnxPb(1-x)I3 Perovskite Solar Cells Covering up to 1060 nm. , 2014, The journal of physical chemistry letters.

[13]  Jinsong Huang,et al.  Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films , 2016 .

[14]  Omar K Farha,et al.  2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications. , 2015, Journal of the American Chemical Society.

[15]  Qi Chen,et al.  Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. , 2014, ACS nano.

[16]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[17]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[18]  Xianyu Deng,et al.  Effects of Organic Cation Additives on the Fast Growth of Perovskite Thin Films for Efficient Planar Heterojunction Solar Cells. , 2016, ACS applied materials & interfaces.

[19]  Gang Li,et al.  Single Crystal Formamidinium Lead Iodide (FAPbI3): Insight into the Structural, Optical, and Electrical Properties , 2016, Advanced materials.

[20]  Kai Zhu,et al.  Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells , 2017, Nature Energy.

[21]  Laura M. Herz,et al.  Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites , 2017, Nature Energy.

[22]  Yufeng Hu,et al.  Enhanced efficiency and light stability of planar perovskite solar cells by diethylammonium bromide induced large-grain 2D/3D hybrid film , 2019, Organic Electronics.

[23]  Anders Hagfeldt,et al.  Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21% , 2016, Nature Energy.

[24]  Eric T. Hoke,et al.  A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. , 2014, Angewandte Chemie.

[25]  Wei Zhang,et al.  Tailoring Organic Cation of 2D Air‐Stable Organometal Halide Perovskites for Highly Efficient Planar Solar Cells , 2017 .

[26]  F. Giordano,et al.  Ionic Liquid Control Crystal Growth to Enhance Planar Perovskite Solar Cells Efficiency , 2016, Advanced Energy Materials.

[27]  Wei Huang,et al.  Additive engineering for highly efficient organic–inorganic halide perovskite solar cells: recent advances and perspectives , 2017 .

[28]  Jinsong Huang,et al.  Solvent Annealing of Perovskite‐Induced Crystal Growth for Photovoltaic‐Device Efficiency Enhancement , 2014, Advanced materials.

[29]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[30]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[31]  Dane W. deQuilettes,et al.  Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells , 2017, Science Advances.

[32]  L. Etgar,et al.  High efficiency quasi 2D lead bromide perovskite solar cells using various barrier molecules , 2017 .

[33]  Fan Zuo,et al.  Additive Enhanced Crystallization of Solution‐Processed Perovskite for Highly Efficient Planar‐Heterojunction Solar Cells , 2014, Advanced materials.

[34]  Yongbo Yuan,et al.  Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells , 2014, Nature Communications.

[35]  Sergei Tretiak,et al.  High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells , 2016, Nature.

[36]  Yang Yang,et al.  A Bifunctional Lewis Base Additive for Microscopic Homogeneity in Perovskite Solar Cells , 2017 .

[37]  Meng Li,et al.  Controllable Perovskite Crystallization by Water Additive for High‐Performance Solar Cells , 2015 .

[38]  Peng Chen,et al.  In Situ Growth of 2D Perovskite Capping Layer for Stable and Efficient Perovskite Solar Cells , 2018 .

[39]  Luzhou Chen,et al.  The efficiency limit of CH3NH3PbI3 perovskite solar cells , 2015 .

[40]  M. Li,et al.  Enhanced crystallization and stability of perovskites by a cross-linkable fullerene for high-performance solar cells , 2016 .

[41]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[42]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[43]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[44]  Aram Amassian,et al.  Ligand-Stabilized Reduced-Dimensionality Perovskites. , 2016, Journal of the American Chemical Society.

[45]  Yongbo Yuan,et al.  Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells , 2015, Nature Communications.

[46]  N. Park,et al.  Stabilizing the Ag Electrode and Reducing J-V Hysteresis through Suppression of Iodide Migration in Perovskite Solar Cells. , 2017, ACS applied materials & interfaces.

[47]  Andrew J Pearson,et al.  Layered Mixed Tin–Lead Hybrid Perovskite Solar Cells with High Stability , 2018, ACS Energy Letters.

[48]  T. Hayat,et al.  The Effect of Hydrophobicity of Ammonium Salts on Stability of Quasi‐2D Perovskite Materials in Moist Condition , 2018 .

[49]  Qingliang Liao,et al.  Deciphering the NH4PbI3 Intermediate Phase for Simultaneous Improvement on Nucleation and Crystal Growth of Perovskite , 2017 .