Homogeneous splitting sets of a graded integral domain

[1]  David F. Anderson,et al.  Weakly Krull and Related Domains of the Form $D\!+\!M$, $A\!+\!XB[X]$ AND $A\!+\!X^2B[X]$ , 2006 .

[2]  David F. Anderson,et al.  The m-Complement of a Multiplicative Set , 2005 .

[3]  David F. Anderson Divisibility Properties in Graded Integral Domains , 2005 .

[4]  T. Dumitrescu,et al.  t-Splitting sets in integral domains , 2004 .

[5]  David F. Anderson,et al.  The class group of integral domains , 2003 .

[6]  S. Kabbaj,et al.  On The Class Group of a Graded Domain , 2002, math/0606693.

[7]  David F. Anderson,et al.  The A+XB[X] and A+XB[[X]] constructions from GCD-domains , 2001 .

[8]  D. D. Anderson,et al.  Splitting sets in integral domains , 2000 .

[9]  David F. Anderson The Class Group and Local Class Group of an Integral Domain , 2000 .

[10]  David F. Anderson,et al.  Splitting the t-class group , 1991 .

[11]  D. D. Anderson,et al.  Weakly factorial domains and groups of divisibility , 1990 .

[12]  B. Kang On the converse of a well-known fact about Krull domains , 1989 .

[13]  B. Kang Prüfer v-multiplication domains and the ring R[X]Nv , 1989 .

[14]  D. D. Anderson,et al.  On t-invertibility II , 1989 .

[15]  J. Huckaba Commutative Rings with Zero Divisors , 1988 .

[16]  R. Gilmer,et al.  Commutative Semigroup Rings , 1984 .

[17]  David F. Anderson,et al.  Divisorial ideals and invertible ideals in a graded integral domain , 1982 .

[18]  David F. Anderson,et al.  Divisibility Properties of Graded Domains , 1982, Canadian Journal of Mathematics.

[19]  David F. Anderson Graded krull domains , 1979 .

[20]  Thomas H. Parker,et al.  Divisibility properties in semigroup rings. , 1974 .

[21]  R. Fossum The Divisor Class Group of a Krull Domain , 1973 .

[22]  R. Gilmer,et al.  Multiplicative ideal theory , 1968 .

[23]  D. Northcott,et al.  Lessons on rings, modules and multiplicities , 1968 .

[24]  D. Northcott A generalization of a theorem on the content of polynomials , 1959, Mathematical Proceedings of the Cambridge Philosophical Society.