Asymptotic behavior of mixed power variations and statistical estimation in mixed models

[1]  Jean-Marc Bardet,et al.  Moment bounds and central limit theorems for Gaussian subordinated arrays , 2011, J. Multivar. Anal..

[2]  P. Chigansky,et al.  The maximum likelihood drift estimator for mixed fractional Brownian motion , 2012 .

[3]  Georgiy Shevchenko,et al.  Mixed stochastic differential equations with long-range dependence: Existence, uniqueness and convergence of solutions , 2011, Comput. Math. Appl..

[4]  Alexander Melnikov,et al.  On drift parameter estimation in models with fractional Brownian motion , 2011, 1112.2330.

[5]  Wei-guo Zhang,et al.  Maximum-likelihood estimators in the mixed fractional Brownian motion , 2011 .

[6]  Sophie Achard,et al.  Discrete variations of the fractional Brownian motion in the presence of outliers and an additive noise , 2010 .

[7]  D. Filatova,et al.  Mixed fractional Brownian motion: some related questions for computer network traffic modeling , 2008, 2008 International Conference on Signals and Electronic Systems.

[8]  I︠U︡lii︠a︡ S. Mishura Stochastic Calculus for Fractional Brownian Motion and Related Processes , 2008 .

[9]  Ivan Nourdin,et al.  Asymptotic behavior of weighted quadratic and cubic variations of fractional Brownian motion , 2007, 0705.0570.

[10]  D. Nualart,et al.  Central and non-central limit theorems for weighted power variations of fractional brownian motion , 2007, 0710.5639.

[11]  Arnaud Bégyn Asymptotic expansion and central limit theorem for quadratic variations of Gaussian processes , 2007, 0709.0598.

[12]  Jean-Marc Bardet,et al.  Identification of the multiscale fractional Brownian motion with biomechanical applications , 2007, math/0701873.

[13]  Harry van Zanten,et al.  When is a linear combination of independent fBm’s equivalent to a single fBm? , 2007 .

[14]  Y. Mishura,et al.  Mixed Brownian–fractional Brownian model: absence of arbitrage and related topics , 2006 .

[15]  M. Zili On the mixed fractional Brownian motion , 2006 .

[16]  Jean-François Coeurjolly,et al.  Identification of multifractional Brownian motion , 2005 .

[17]  J. Coeurjolly,et al.  Estimating the Parameters of a Fractional Brownian Motion by Discrete Variations of its Sample Paths , 2001 .

[18]  J. Coeurjolly,et al.  Simulation and identification of the fractional Brownian motion: a bibliographical and comparative study , 2000 .

[19]  P. Robinson,et al.  Variance-type estimation of long memory , 1999 .

[20]  Jacques Istas,et al.  Identifying the multifractional function of a Gaussian process , 1998 .

[21]  John T. Kent,et al.  Estimating the Fractal Dimension of a Locally Self-similar Gaussian Process by using Increments , 1997 .

[22]  Gabriel Lang,et al.  Quadratic variations and estimation of the local Hölder index of a gaussian process , 1997 .

[23]  M. A. Arcones,et al.  Limit Theorems for Nonlinear Functionals of a Stationary Gaussian Sequence of Vectors , 1994 .

[24]  Liudas Giraitis,et al.  CLT and other limit theorems for functionals of Gaussian processes , 1985 .

[25]  P. Major,et al.  Central limit theorems for non-linear functionals of Gaussian fields , 1983 .

[26]  R. Dobrushin,et al.  Non-central limit theorems for non-linear functional of Gaussian fields , 1979 .

[27]  M. Taqqu Convergence of integrated processes of arbitrary Hermite rank , 1979 .

[28]  Anatoly,et al.  CAMBRIDGE TRACTS IN MATHEMATICS , 2022 .