Local Ca2+ detection and modulation of synaptic release by astrocytes

Astrocytes communicate with synapses by means of intracellular calcium ([Ca2+]i) elevations, but local calcium dynamics in astrocytic processes have never been thoroughly investigated. By taking advantage of high-resolution two-photon microscopy, we identify the characteristics of local astrocyte calcium activity in the adult mouse hippocampus. Astrocytic processes showed intense activity, triggered by physiological transmission at neighboring synapses. They encoded synchronous synaptic events generated by sparse action potentials into robust regional (∼12 μm) [Ca2+]i elevations. Unexpectedly, they also sensed spontaneous synaptic events, producing highly confined (∼4 μm), fast (millisecond-scale) miniature Ca2+ responses. This Ca2+ activity in astrocytic processes is generated through GTP- and inositol-1,4,5-trisphosphate–dependent signaling and is relevant for basal synaptic function. Thus, buffering astrocyte [Ca2+]i or blocking a receptor mediating local astrocyte Ca2+ signals decreased synaptic transmission reliability in minimal stimulation experiments. These data provide direct evidence that astrocytes are integrated in local synaptic functioning in adult brain.

[1]  P. Andersen,et al.  Putative Single Quantum and Single Fibre Excitatory Postsynaptic Currents Show Similar Amplitude Range and Variability in Rat Hippocampal Slices , 1992, The European journal of neuroscience.

[2]  P. Lio,et al.  Developmental changes in membrane properties and postsynaptic currents of granule cells in rat dentate gyrus. , 1996, Journal of neurophysiology.

[3]  Christian Rosenmund,et al.  Definition of the Readily Releasable Pool of Vesicles at Hippocampal Synapses , 1996, Neuron.

[4]  M. Trommald,et al.  Dimensions and density of dendritic spines from rat dentate granule cells based on reconstructions from serial electron micrographs , 1997, The Journal of comparative neurology.

[5]  D. Kullmann,et al.  Long-term potentiation and dual-component quantal signaling in the dentate gyrus. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[6]  S. Goldman,et al.  Astrocyte-mediated potentiation of inhibitory synaptic transmission , 1998, Nature Neuroscience.

[7]  A. Reichenbach,et al.  Microdomains for neuron–glia interaction: parallel fiber signaling to Bergmann glial cells , 1999, Nature Neuroscience.

[8]  Marco Capogna,et al.  Miniature synaptic events maintain dendritic spines via AMPA receptor activation , 1999, Nature Neuroscience.

[9]  C. Stevens,et al.  Reversal of synaptic vesicle docking at central synapses , 1999, Nature Neuroscience.

[10]  R. Nicoll,et al.  Effects of reduced vesicular filling on synaptic transmission in rat hippocampal neurones , 2000, The Journal of physiology.

[11]  R. Anwyl,et al.  NMDA receptor‐ and metabotropic glutamate receptor‐dependent synaptic plasticity induced by high frequency stimulation in the rat dentate gyrus in vitro , 2001, The Journal of physiology.

[12]  H. Parri,et al.  Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation , 2001, Nature Neuroscience.

[13]  B. Barres,et al.  Control of synapse number by glia. , 2001, Science.

[14]  B. Gähwiler,et al.  Fast synaptic transmission mediated by P2X receptors in CA3 pyramidal cells of rat hippocampal slice cultures , 2001, The Journal of physiology.

[15]  F. Kirchhoff,et al.  GFAP promoter‐controlled EGFP‐expressing transgenic mice: A tool to visualize astrocytes and astrogliosis in living brain tissue , 2001, Glia.

[16]  Vitaly Filippov,et al.  Nitric Oxide Signals Parallel Fiber Activity to Bergmann Glial Cells in the Mouse Cerebellar Slice , 2001, Molecular and Cellular Neuroscience.

[17]  Pierre J. Magistretti,et al.  The tripartite synapse: glia in synaptic transmission , 2002 .

[18]  S. Oloff,et al.  Hippocampal astrocytes in situ exhibit calcium oscillations that occur independent of neuronal activity. , 2002, Journal of neurophysiology.

[19]  G. Wang,et al.  Voltage-gated sodium channels as primary targets of diverse lipid-soluble neurotoxins. , 2003, Cellular signalling.

[20]  Rafael Yuste,et al.  Calcium Microdomains in Aspiny Dendrites , 2003, Neuron.

[21]  C. Jahr,et al.  Ectopic Release of Synaptic Vesicles , 2003, Neuron.

[22]  V. Gundersen,et al.  Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate , 2004, Nature Neuroscience.

[23]  F. Helmchen,et al.  Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo , 2004, Nature Methods.

[24]  Neuronal Synchrony Mediated by Astrocytic Glutamate through Activation of Extrasynaptic NMDA Receptors , 2004, Neuron.

[25]  K. Svoboda,et al.  Imaging Calcium Concentration Dynamics in Small Neuronal Compartments , 2004, Science's STKE.

[26]  G. Buzsáki,et al.  Calcium Dynamics of Cortical Astrocytic Networks In Vivo , 2004, PLoS biology.

[27]  M. Colonnese,et al.  NMDA Receptor Currents Suppress Synapse Formation on Sprouting Axons In Vivo , 2005, The Journal of Neuroscience.

[28]  V. Golovina Visualization of localized store‐operated calcium entry in mouse astrocytes. Close proximity to the endoplasmic reticulum , 2005, The Journal of physiology.

[29]  T. Takano,et al.  Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo , 2006, Nature Neuroscience.

[30]  Bernardo L Sabatini,et al.  Synapse-specific plasticity and compartmentalized signaling in cerebellar stellate cells , 2006, Nature Neuroscience.

[31]  E. Schuman,et al.  Miniature Neurotransmission Stabilizes Synaptic Function via Tonic Suppression of Local Dendritic Protein Synthesis , 2006, Cell.

[32]  H. Kimelberg,et al.  Development of GLAST(+) astrocytes and NG2(+) glia in rat hippocampus CA1: mature astrocytes are electrophysiologically passive. , 2006, Journal of neurophysiology.

[33]  Andrea Volterra,et al.  P2Y1 Receptor-evoked Glutamate Exocytosis from Astrocytes , 2006, Journal of Biological Chemistry.

[34]  Yuriy Pankratov,et al.  Quantal Release of ATP in Mouse Cortex , 2007, The Journal of general physiology.

[35]  Todd A Fiacco,et al.  Selective Stimulation of Astrocyte Calcium In Situ Does Not Affect Neuronal Excitatory Synaptic Activity , 2007, Neuron.

[36]  Khaleel Bhaukaurally,et al.  Glutamate exocytosis from astrocytes controls synaptic strength , 2007, Nature Neuroscience.

[37]  G. Perea,et al.  Astrocytes Potentiate Transmitter Release at Single Hippocampal Synapses , 2007, Science.

[38]  K. Harris,et al.  Plasticity of perisynaptic astroglia during synaptogenesis in the mature rat hippocampus , 2007, Glia.

[39]  A. Araque,et al.  Endocannabinoids Mediate Neuron-Astrocyte Communication , 2008, Neuron.

[40]  Todd A Fiacco,et al.  Loss of IP3 Receptor-Dependent Ca2+ Increases in Hippocampal Astrocytes Does Not Affect Baseline CA1 Pyramidal Neuron Synaptic Activity , 2008, The Journal of Neuroscience.

[41]  G. Perea,et al.  Tripartite synapses: astrocytes process and control synaptic information , 2009, Trends in Neurosciences.

[42]  Hans-Christian Pape,et al.  GABA uptake-dependent Ca2+ signaling in developing olfactory bulb astrocytes , 2009, Proceedings of the National Academy of Sciences.

[43]  Kaori Ikeda,et al.  Counting the number of releasable synaptic vesicles in a presynaptic terminal , 2009, Proceedings of the National Academy of Sciences.

[44]  Michael M. Halassa,et al.  Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. , 2010, Annual review of physiology.

[45]  Todd A Fiacco,et al.  Supporting Online Material Materials and Methods Som Text Figs. S1 to S4 Hippocampal Short-and Long-term Plasticity Are Not Modulated by Astrocyte Ca 2+ Signaling , 2022 .

[46]  S. Oliet,et al.  Long term potentiation depends on release of D-serine from astrocytes , 2009, Nature.

[47]  A. Verkhratsky,et al.  Ionotropic NMDA and P2X1/5 receptors mediate synaptically induced Ca2+ signalling in cortical astrocytes. , 2010, Cell calcium.

[48]  D. Attwell,et al.  Do astrocytes really exocytose neurotransmitters? , 2010, Nature Reviews Neuroscience.

[49]  M. Santello,et al.  TNFα Controls Glutamatergic Gliotransmission in the Hippocampal Dentate Gyrus , 2011, Neuron.

[50]  D. Muller,et al.  Excitatory synaptic activity is associated with a rapid structural plasticity of inhibitory synapses on hippocampal CA1 pyramidal cells , 2011, Neuropharmacology.

[51]  M Larsson,et al.  Immunogold detection of L-glutamate and D-serine in small synaptic-like microvesicles in adult hippocampal astrocytes. , 2012, Cerebral cortex.