Polymers of Intrinsic Microporosity─Molecular Mobility and Physical Aging Revisited by Dielectric Spectroscopy and X-ray Scattering

[1]  M. Carta,et al.  Adjustable Functionalization of Hyper-Cross-Linked Polymers of Intrinsic Microporosity for Enhanced CO2 Adsorption and Selectivity over N2 and CH4 , 2022, ACS applied materials & interfaces.

[2]  Fan Yang,et al.  Post-modification of PIM-1 and simultaneously in situ synthesis of porous polymer networks into PIM-1 matrix to enhance CO2 separation performance , 2021 .

[3]  N. Delpouve,et al.  Physical aging of selenium glass: Assessing the double mechanism of equilibration and the crystallization process , 2021 .

[4]  P. Budd,et al.  Molecular Mobility of a Polymer of Intrinsic Microporosity Revealed by Quasielastic Neutron Scattering , 2020 .

[5]  P. Webley,et al.  Physical Aging Investigations of a Spirobisindane-Locked Polymer of Intrinsic Microporosity , 2020 .

[6]  C. Bowen,et al.  Chemical modification of the polymer of intrinsic microporosity PIM-1 for enhanced hydrogen storage , 2020, Adsorption.

[7]  A. Fuoco,et al.  Correlating Gas Permeability and Young’s Modulus during the Physical Aging of Polymers of Intrinsic Microporosity Using Atomic Force Microscopy , 2019, Industrial & Engineering Chemistry Research.

[8]  M. Hütter,et al.  Effect of low‐temperature physical aging on the dynamic transitions of atactic polystyrene in the glassy state , 2019, Journal of Polymer Science Part B: Polymer Physics.

[9]  I. Pinnau,et al.  Permeation, sorption, and diffusion of CO2-CH4 mixtures in polymers of intrinsic microporosity: The effect of intrachain rigidity on plasticization resistance , 2019, Journal of Membrane Science.

[10]  P. Budd,et al.  Effect of Backbone Rigidity on the Glass Transition of Polymers of Intrinsic Microporosity Probed by Fast Scanning Calorimetry. , 2019, ACS macro letters.

[11]  H. Yin,et al.  Influence of Trimethylsilyl Side Groups on the Molecular Mobility and Charge Transport in Highly Permeable Glassy Polynorbornenes , 2019, ACS Applied Polymer Materials.

[12]  Neil B. McKeown,et al.  Gas Permeation Properties, Physical Aging, and Its Mitigation in High Free Volume Glassy Polymers. , 2018, Chemical reviews.

[13]  P. Budd,et al.  First Clear-Cut Experimental Evidence of a Glass Transition in a Polymer with Intrinsic Microporosity: PIM-1. , 2018, The journal of physical chemistry letters.

[14]  P. Budd,et al.  Anomalies in the low frequency vibrational density of states for a polymer with intrinsic microporosity - the Boson peak of PIM-1. , 2018, Physical chemistry chemical physics : PCCP.

[15]  H. Yin,et al.  Molecular Mobility and Physical Aging of a Highly Permeable Glassy Polynorbornene as Revealed by Dielectric Spectroscopy , 2017 .

[16]  A. W. Ashton,et al.  Processing two-dimensional X-ray diffraction and small-angle scattering data in DAWN 2 , 2017, Journal of applied crystallography.

[17]  Christopher R. Mason,et al.  Effect of physical aging on the gas transport and sorption in PIM-1 membranes , 2017 .

[18]  P. Budd,et al.  Molecular Mobility of the High Performance Membrane Polymer PIM-1 as Investigated by Dielectric Spectroscopy. , 2016, ACS macro letters.

[19]  P. Budd,et al.  The influence of few-layer graphene on the gas permeability of the high-free-volume polymer PIM-1 , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  L. Olivieri,et al.  Effect of Graphene and Graphene Oxide Nanoplatelets on the Gas Permselectivity and Aging Behavior of Poly(trimethylsilyl propyne) (PTMSP) , 2015 .

[21]  Wai Fen Yong,et al.  Suppression of aging and plasticization in highly permeable polymers , 2015 .

[22]  I. Pinnau,et al.  Physical Aging, Plasticization and Their Effects on Gas Permeation in "Rigid" Polymers of Intrinsic Microporosity , 2015 .

[23]  S. Japip,et al.  Highly permeable zeolitic imidazolate framework (ZIF)-71 nano-particles enhanced polyimide membranes for gas separation , 2014 .

[24]  P. Budd,et al.  Physical aging of polymers of intrinsic microporosity: a SAXS/WAXS study , 2014 .

[25]  Aaron W Thornton,et al.  Ending aging in super glassy polymer membranes. , 2014, Angewandte Chemie.

[26]  M. Böhning,et al.  Correlation of Activation Energies of Gas Diffusivity and Local Matrix Mobility in Polycarbonate/POSS Nanocomposites , 2013 .

[27]  P. Budd,et al.  Aging and Free Volume in a Polymer of Intrinsic Microporosity (PIM-1) , 2012 .

[28]  Andrew I. Cooper,et al.  Nanoporous organic polymer networks , 2012 .

[29]  M. Guiver,et al.  Influence of Intermolecular Interactions on the Observable Porosity in Intrinsically Microporous Polymers , 2011 .

[30]  Neil B. McKeown,et al.  Exploitation of Intrinsic Microporosity in Polymer-Based Materials , 2010 .

[31]  Neil B. McKeown,et al.  Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity: Polybenzodioxane PIM-1 , 2008 .

[32]  Jingshe Song,et al.  Polymers of Intrinsic Microporosity Containing Trifluoromethyl and Phenylsulfone Groups as Materials for Membrane Gas Separation , 2008 .

[33]  L. Robeson,et al.  The upper bound revisited , 2008 .

[34]  P. Budd,et al.  Atomistic packing model and free volume distribution of a polymer with intrinsic microporosity (PIM-1) , 2008 .

[35]  P. Budd,et al.  Unusual temperature dependence of the positron lifetime in a polymer of intrinsic microporosity , 2007 .

[36]  Neil B. McKeown,et al.  Gas separation membranes from polymers of intrinsic microporosity , 2005 .

[37]  Neil B. McKeown,et al.  Solution‐Processed, Organophilic Membrane Derived from a Polymer of Intrinsic Microporosity , 2004 .

[38]  Saad Makhseed,et al.  Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. , 2004, Chemical communications.

[39]  R. Baker Future directions of membrane gas separation technology , 2002 .

[40]  Y. Yampolskii Polymeric Gas Separation Membranes , 1993 .

[41]  A. K. Jonscher,et al.  The ‘universal’ dielectric response , 1977, Nature.

[42]  C. Angell,et al.  GLASSES WITH STRONG CALORIMETRIC BETA -GLASS TRANSITIONS AND THE RELATION TO THE PROTEIN GLASS TRANSITION PROBLEM , 1994 .