Feasibility study on automated recognition of allergenic pollen: grass, birch and mugwort

[1]  Geoffrey J. McLachlan,et al.  Discriminant Analysis and Statistical Pattern Recognition: McLachlan/Discriminant Analysis & Pattern Recog , 2005 .

[2]  Arno Formella,et al.  Pollen classification using brightness-based and shape-based descriptors , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[3]  Ruili Wang,et al.  A Combined Method for Texture Analysis and Its Application , 2004, International Conference on Computational Science.

[4]  Monique Thonnat,et al.  Development of a semi-automatic system for pollen recognition , 2002 .

[5]  O. Ronneberger,et al.  Automated pollen recognition using 3D volume images from fluorescence microscopy , 2002 .

[6]  Andrew R. Webb,et al.  Statistical Pattern Recognition , 1999 .

[7]  Ping Li,et al.  Pollen texture identification using neural networks , 1999 .

[8]  Lucas J. van Vliet,et al.  The digital signal processing handbook , 1998 .

[9]  R. Weber Pollen identification. , 1998, Annals of allergy, asthma & immunology : official publication of the American College of Allergy, Asthma, & Immunology.

[10]  G. McLachlan Discriminant Analysis and Statistical Pattern Recognition , 1992 .

[11]  Belur V. Dasarathy,et al.  Nearest neighbor (NN) norms: NN pattern classification techniques , 1991 .

[12]  Josef Kittler,et al.  Mathematics Methods of Feature Selection in Pattern Recognition , 1975, Int. J. Man Mach. Stud..

[13]  James P. Egan,et al.  Signal detection theory and ROC analysis , 1975 .

[14]  M. Stone Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[15]  M. R. Mickey,et al.  Estimation of Error Rates in Discriminant Analysis , 1968 .