Direct electrical measurement of the electron g factor in ultra-thin InGaAs/InP single quantum wells

Abstract The Lande g factor has been measured for electrons in ultra-thin InGaAs/InP quantum wells by means of an electrically-detected electron spin resonance (EDESR) technique. These experiments, carried out in a range of applied magnetic fields, allowed direct, unambiguous determination of both the absolute value and sign of the normal component of the electron g factor, g ∥ ( g parallel to the structure growth axis and the magnetic field). We observed a linear magnetic field dependence to the g factor, in agreement with the expression g ∥ ( B , N ) = g ∥ 0 + c ( N + 1 / 2 ) B , where N is the Landau level index.

[1]  Eli Yablonovitch,et al.  Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures , 1999, quant-ph/9905096.

[2]  K. W. Kim,et al.  In-plane light-hole g factor in strained cubic heterostructures , 2001 .

[3]  Dobers,et al.  Electron-spin resonance of the two-dimensional electron gas in Ga0.47In0.53As-InP heterostructures. , 1989, Physical review. B, Condensed matter.

[4]  Eli Yablonovitch,et al.  Gate-controlled electron spin resonance in G a A s / A l x Ga 1 − x As heterostructures , 2001 .

[5]  Kowalski,et al.  Conduction-band spin splitting of type-I GaxIn1-xAs/InP quantum wells. , 1994, Physical review. B, Condensed matter.

[6]  M. Dobers Electron spin resonance and overhauser shift of two-dimensional conduction electrons , 1990 .

[7]  H. Carr,et al.  The Principles of Nuclear Magnetism , 1961 .

[8]  K. Klitzing,et al.  Electron-spin resonance in the two-dimensional electron gas of GaAs-AlxGa1-xAs heterostructures. , 1988, Physical review. B, Condensed matter.

[9]  E. Yablonovitch,et al.  A spin-coherent semiconductor photo-detector for quantum communication ☆ , 2000, quant-ph/0004078.

[10]  K. W. Kim,et al.  Designing a heterostructure for the quantum receiver , 2002 .

[11]  E. Ivchenko,et al.  Electron g factor in one- and zero-dimensional semiconductor nanostructures , 1998 .

[12]  E. Yablonovitch,et al.  A solid-state spin coherent photo-detector for quantum communication , 2000 .

[13]  M. Willander,et al.  Electronic g factor in biased quantum wells , 1997 .

[14]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[15]  Electron g factor engineering in III-V semiconductors for quantum communications , 2001, quant-ph/0102056.

[16]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[17]  V. Härle,et al.  Optically detected spin resonance of conduction band electrons in InGaAs/InP quantum wells , 1996 .

[18]  Mathematical model for predicting molecular-beam epitaxy growth rates for wafer production , 2003 .

[19]  Eli Yablonovitch,et al.  Optoelectronic quantum telecommunications based on spins in semiconductors , 2003 .

[20]  Weimann,et al.  Electron-spin resonance in the two-dimensional electron gas of GaAs-AlxGa1-xAs heterostructures. , 1988, Physical review. B, Condensed matter.

[21]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[22]  D. Stein,et al.  Electron Spin Resonance on G a A s − Al x Ga 1 − x As Heterostructures , 1983 .