Bifurcations of Dynamical Systems

The subject of these lectures is the bifurcation theory of dynamical systems. They are not comprehensive, as we take up some facets of bifurcation theory and largely ignore others. In particular, we focus our attention on finite dimensional systems of difference and differential equations and say almost nothing about infinite dimensional systems. The reader interested in the infinite dimensional theory and its applications should consult the recent survey of Marsden [66] and the conference proceedings edited by Rabinowitz [89]. We also neglect much of the multidimensional bifurcation theory of singular points of differential equations. The systematic exposition of this theory is much more algebraic than the more geometric questions considered here, and Arnold [7,9] provides a good survey of work in this area. We confine our interest to questions which involve the geometric orbit structure of dynamical systems. We do make an effort to consider applications of the mathematical phenomena illustrated. For general background about the theory of dynamical systems consult [102]. Our style is informal and our intent is pedagogic. The current state of bifurcation theory is a mixture of mathematical fact and conjecture. The demarcation between the proved and unproved is small [11]. Rather than attempting to sort out this confused state of affairs for the reader, we hope to provide the geometric insight which will allow him to explore further.

[1]  J. E. Littlewood,et al.  On Non‐Linear Differential Equations of the Second Order: I. the Equation y¨ − k(1‐y2)y˙ + y = bλk cos(λl + α), k Large , 1945 .

[2]  Santiago Ibáñez,et al.  Singularities of vector fields on , 1998 .

[3]  David Ruelle,et al.  The Lorenz attractor and the problem of turbulence , 1976 .

[4]  J. E. Littlewood On non-linear differential equations of the second order: IV. The general equation $$\ddot y + kf\left( y \right)\dot y + g\left( y \right) = bkp\left( \varphi \right)$$ , φ=t+α, φ=t+α , 1957 .

[5]  V. Arnold Critical Points of Smooth Functions , 1975 .

[6]  Bifurcation and stability of nT-periodic solutions branching from T-periodic solutions at points of resonance , 1977 .

[7]  R. F. Williams,et al.  The structure of Lorenz attractors , 1979 .

[8]  S. Smale Differentiable dynamical systems , 1967 .

[9]  A. B. Poore,et al.  On the dynamic behavior of continuous stirred tank reactors , 1974 .

[10]  L. P. Šil'nikov,et al.  A CONTRIBUTION TO THE PROBLEM OF THE STRUCTURE OF AN EXTENDED NEIGHBORHOOD OF A ROUGH EQUILIBRIUM STATE OF SADDLE-FOCUS TYPE , 1970 .

[11]  R. I. Bogdanov Versal deformations of a singular point of a vector field on the plane in the case of zero eigenvalues , 1975 .

[12]  F. Busse Magnetohydrodynamics of the Earth's Dynamo , 1978 .

[13]  N. Kopell,et al.  Bifurcations Under Nongeneric Conditions , 1974 .

[14]  M. R. Herman,et al.  Mesure de Lebesgue et Nombre de Rotation , 1977 .

[15]  J. J. Stoker Nonlinear Vibrations in Mechanical and Electrical Systems , 1950 .

[16]  C. Hayashi,et al.  Nonlinear oscillations in physical systems , 1987 .

[17]  S. Lefschetz On a theorem of Bendixson , 1968 .

[18]  J. E. Littlewood,et al.  On non-linear differential equations of the second order: III. The equation $$\ddot y - k(1 - y^2 )\dot y + y = b \mu k cos (\mu t + \alpha )$$ for largek, and its generalizationsfor largek, and its generalizations , 1957 .

[19]  W. Thurston,et al.  On iterated maps of the interval , 1988 .

[20]  J. Guckenheimer On the bifurcation of maps of the interval , 1977 .

[21]  J. Flaherty,et al.  Frequency Entrainment of a Forced van der pol Oscillator. , 1977 .

[22]  A. Nicholson,et al.  The Self-Adjustment of Populations to Change , 1957 .

[23]  A. Andronov,et al.  Qualitative Theory of Second-order Dynamic Systems , 1973 .

[24]  Daniel D. Joseph,et al.  Stability of fluid motions , 1976 .

[25]  Floris Takens,et al.  A Nonstabilizable Jet of a Singularity of a Vector Field , 1973 .

[26]  F. Takens Partially hyperbolic fixed points , 1971 .

[27]  R. F. Williams,et al.  Structural stability of Lorenz attractors , 1979 .

[28]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[29]  J. Lawton,et al.  Dynamic complexity in predator-prey models framed in difference equations , 1975, Nature.

[30]  S. Smale Diffeomorphisms with Many Periodic Points , 1965 .

[31]  A. Seidenberg,et al.  Reduction of Singularities of the Differential Equation Ady = Bdx , 1968 .

[32]  N. Levinson,et al.  A Second Order Differential Equation with Singular Solutions , 1949 .

[33]  M. Hénon,et al.  A two-dimensional mapping with a strange attractor , 1976 .

[34]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[35]  D. A. Singer,et al.  Stable Orbits and Bifurcation of Maps of the Interval , 1978 .

[36]  Nathan Keyfitz,et al.  Introduction to the mathematics of population , 1968 .

[37]  Robert M. May,et al.  Simple mathematical models with very complicated dynamics , 1976, Nature.

[38]  A. N. Sharkovskiĭ COEXISTENCE OF CYCLES OF A CONTINUOUS MAP OF THE LINE INTO ITSELF , 1995 .

[39]  Sur la conjugaison des difféomorphismes du cercle à des rotations , 1976 .

[40]  Jacob Palis,et al.  Bifurcations of Morse–Smale Dynamical Systems , 1973 .

[41]  Shui-Nee Chow,et al.  Applications of generic bifurcation. II , 1975 .

[42]  Robert Shaw Strange Attractors, Chaotic Behavior, and Information Flow , 1981 .

[43]  Shlomo Sternberg,et al.  Local Contractions and a Theorem of Poincare , 1957 .

[44]  J. Grasman,et al.  Relaxation Oscillations Governed by a Van der Pol Equation with Periodic Forcing Term , 1976 .

[45]  H. Swinney,et al.  Onset of Turbulence in a Rotating Fluid , 1975 .

[46]  F. Takens,et al.  STABLE ARCS OF DIFFEOMORPHISMS , 1976 .

[47]  John E. Franke,et al.  Existence of periodic points for maps ofS1 , 1973 .

[48]  V. Arnold SINGULARITIES OF SMOOTH MAPPINGS , 1968 .

[49]  A. W. Gillies,et al.  ON THE TRANSFORMATIONS OF SINGULARITIES AND LIMIT CYCLES OF THE VARIATIONAL EQUATIONS OF VAN DER POL , 1954 .

[50]  Pavol Brunovský On one-parameter families of diffeomorphisms , 1970 .

[51]  V. Arnold ON MATRICES DEPENDING ON PARAMETERS , 1971 .

[52]  Freddy Dumortier,et al.  Singularities of vector fields on the plane , 1977 .

[53]  J. Guckenheimer,et al.  The dynamics of density dependent population models , 1977, Journal of mathematical biology.

[54]  J. Palis Some developments on stability and bifurcations of dynamical systems , 1977 .

[55]  V. Arnold LECTURES ON BIFURCATIONS IN VERSAL FAMILIES , 1972 .

[56]  A. Denjoy,et al.  Sur les courbes définies par les équations différentielles à la surface du tore , 1932 .

[57]  Floris Takens,et al.  Singularities of vector fields , 1974 .

[58]  L. P. Šil'nikov,et al.  ON THREE-DIMENSIONAL DYNAMICAL SYSTEMS CLOSE TO SYSTEMS WITH A STRUCTURALLY UNSTABLE HOMOCLINIC CURVE. II , 1972 .

[59]  H. Brolin Invariant sets under iteration of rational functions , 1965 .

[60]  F. Takens,et al.  On the nature of turbulence , 1971 .

[61]  L. Glass,et al.  Oscillation and chaos in physiological control systems. , 1977, Science.

[62]  F. Takens,et al.  Topological equivalence of normally hyperbolic dynamical systems , 1977 .

[63]  S. Newhouse,et al.  The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms , 1979 .

[64]  M. Peixoto,et al.  Structural stability on two-dimensional manifolds☆ , 1962 .

[65]  P. Hartman Ordinary Differential Equations , 1965 .

[66]  P. Fatou,et al.  Sur les équations fonctionnelles , 1920 .

[67]  Michael Jakobson,et al.  ON SMOOTH MAPPINGS OF THE CIRCLE INTO ITSELF , 1971 .

[68]  J. Palis On Morse-Smale dynamical systems , 1969 .

[69]  Vladimir I. Arnold Algebraic unsolvability of the problem of Lyapunov stability and the problem of topological classification of singular points of an analytic system of differential equations , 1971 .

[70]  E. Friedlander K(Π,1)'s in characteristic p>0 , 1973 .

[71]  V. I. Arnol'd,et al.  Loss of stability of self-oscillations close to resonance and versal deformations of equivariant vector fields , 1977 .

[72]  S. Smale On the differential equations of species in competition , 1976, Journal of mathematical biology.

[73]  J. Sotomayor Structural Stability and Bifurcation Theory , 1973 .

[74]  Bifurcations of topological type at singular points of parametrized vector fields , 1972 .

[75]  René Thom,et al.  Structural stability and morphogenesis , 1977, Pattern Recognit..

[76]  Sidnie Dresher Feit,et al.  Characteristic exponents and strange attractors , 1978 .

[77]  John Guckenheimer,et al.  Bifurcation and Catastrophe††AMS (MOS) 1970 SUBJECT CLASSIFICATION: 58F99.‡‡Research supported by National Science Foundation (GP-7952X2) at the Institute for Advanced Study, Princeton, New Jersey. , 1973 .

[78]  Jorge Sotomayor,et al.  Generic Bifurcations of Dynamical Systems , 1973 .

[79]  D. Ruelle SENSITIVE DEPENDENCE ON INITIAL CONDITION AND TURBULENT BEHAVIOR OF DYNAMICAL SYSTEMS , 1979 .

[80]  James A. Yorke,et al.  Preturbulence: A regime observed in a fluid flow model of Lorenz , 1979 .

[81]  F. Takens Integral Curves Near Mildly Degenerate Singular Points of Vector Fields , 1973 .

[82]  R. I. Bogdanov Orbital equivalence of singular points of vector fields on the plane , 1976 .

[83]  Shlomo Sternberg,et al.  On the Structure of Local Homeomorphisms of Euclidean n-Space, II , 1958 .

[84]  Hermann Haken,et al.  Analogy between higher instabilities in fluids and lasers , 1975 .

[85]  S. Newhouse,et al.  Diffeomorphisms with infinitely many sinks , 1974 .

[86]  W. Melo Moduli of stability of two-dimensional diffeomorphisms , 1980 .

[87]  Paul H. Roberts,et al.  The Rikitake two-disc dynamo system , 1970, Mathematical Proceedings of the Cambridge Philosophical Society.

[88]  S. Newhouse On simple arcs between structurally stable flows , 1975 .

[89]  Harry L. Swinney,et al.  BIFURCATIONS TO PERIODIC, QUASIPERIODIC, AND CHAOTIC REGIMES IN ROTATING AND CONVECTING FLUIDS * , 1979 .

[90]  J. Yorke,et al.  Period Three Implies Chaos , 1975 .

[91]  Robert M. May,et al.  Patterns of Dynamical Behaviour in Single-Species Populations , 1976 .