Chiral metamaterial structures with strong optical activity and their applications

Abstract. We numerically and experimentally introduce a chiral metamaterial (MTM) showing strong optical activity, dynamical circular dichroism, and mechanical tunability because of its efficient design. The proposed chiral MTM structure is composed of bi-layered discontinuous cross-wire-strips, and utilized in order to realize polarization rotation. It provides a giant negative refractive index and a large chirality. We also present a detailed numerical analysis in order to explain the physical interpretation of the designed structure mechanism with a parametric study. Moreover, an MTM absorber application of the proposed chiral MTM is presented to show an additional feature of the model. The introduced chiral design offers a much simpler geometry and more efficient results. In addition, the structure provides chiral nihility unlike the other chiral MTM studies in the literature. The experimental results of the fabricated prototype are in good agreement with the numerical simulations. As a result, the suggested chiral MTM enables myriad potential applications in polarization converters, radar, and military technologies.

[1]  L. Jelinek,et al.  Towards a systematic design of isotropic bulk magnetic metamaterials using the cubic point groups of symmetry , 2007 .

[2]  Hartmut G. Roskos,et al.  Terahertz sensing application by using planar split-ring-resonator structures , 2012 .

[3]  D. Smith,et al.  Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients , 2001, physics/0111203.

[4]  M. Soleimani,et al.  On the Miniaturization of Semiplanar Chiral Metamaterial Structures , 2012, IEEE Transactions on Antennas and Propagation.

[5]  M. Fiddy,et al.  COVERED IMAGE OF SUPERLENS , 2013 .

[6]  C. Soukoulis,et al.  Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index , 2010, 1008.5172.

[7]  Muharrem Karaaslan,et al.  Perfect metamaterial absorber with polarization and incident angle independencies based on ring and cross-wire resonators for shielding and a sensor application , 2014 .

[8]  Ekmel Ozbay,et al.  Transmission measurements of a new metamaterial sample with negative refraction index , 2010 .

[9]  J. Barroso,et al.  Application of a Useful Uncertainty Analysis as a Metric Tool for Assessing the Performance of Electromagnetic Properties Retrieval Methods of Bianisotropic Metamaterials , 2012 .

[10]  Maria Kafesaki,et al.  Negative refractive index due to chirality , 2009, 0907.1121.

[11]  Nikolay I. Zheludev,et al.  Metamaterial with negative index due to chirality , 2009 .

[12]  Francisco Mesa,et al.  Negative refraction from balanced quasi‐planar chiral inclusions , 2007 .

[13]  Jyh-Long Chern,et al.  Experimental realization of breaking diffraction limit by planar negative-index metamaterials in free space , 2005 .

[14]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[15]  Ekmel Ozbay,et al.  Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Kun Song,et al.  A frequency-tunable 90°-polarization rotation device using composite chiral metamaterials , 2013 .

[17]  Costas M. Soukoulis,et al.  Nonplanar chiral metamaterials with negative index , 2009 .

[18]  E. Ozbay,et al.  Complementary chiral metamaterials with giant optical activity and negative refractive index , 2011 .

[19]  C. Sabah,et al.  Experimental analysis of Λ-shaped magnetic resonator for mu-negative metamaterials , 2013 .

[20]  Negative refractive index in chiral spiral metamaterials at terahertz frequencies , 2011 .

[21]  Lei Zhang,et al.  Negative Index Materials Using Simple Short Wire Pairs , 2006 .

[22]  David R. Smith,et al.  Electromagnetic parameter retrieval from inhomogeneous metamaterials. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  M. Karaaslan,et al.  Asymmetric Transmission of Linearly Polarized Waves and Dynamically Wave Rotation Using Chiral Metamaterial , 2013 .

[24]  N. Wongkasem,et al.  High negative refractive index in chiral metamaterials , 2012 .

[25]  Hartmut G. Roskos,et al.  Broadside-coupled triangular split-ring-resonators for terahertz sensing , 2013 .

[26]  Cumali Sabah Multiband planar metamaterials , 2011 .

[27]  Hartmut G. Roskos,et al.  DESIGN OF A TERAHERTZ POLARIZATION ROTATOR BASED ON A PERIODIC SEQUENCE OF CHIRAL- METAMATERIAL AND DIELECTRIC SLABS , 2012 .

[28]  Rongkuo Zhao,et al.  Chiral metamaterials: retrieval of the effective parameters with and without substrate. , 2010, Optics express.

[29]  Baoqing Zeng,et al.  A Double-Layer Chiral Metamaterial with Negative Index , 2010 .

[30]  D. Abbott,et al.  Metamaterials in the Terahertz Regime , 2009, IEEE Photonics Journal.

[31]  N. Wongkasem,et al.  Transmission properties in chiral metamaterials , 2012 .

[32]  Muharrem Karaaslan,et al.  DUAL-BAND POLARIZATION INDEPENDENT META- MATERIAL ABSORBER BASED ON OMEGA RESOANA- TOR AND OCTA-STARSTRIP CONFIGURATION , 2013 .

[33]  Cumali Sabah,et al.  Multilayer System of Lorentz/Drude Type Metamaterials with Dielectric Slabs and its Application to Electromagnetic Filters , 2009 .

[34]  Jie Li,et al.  DESIGN AND SIMULATION OF L-SHAPED CHIRAL NEGATIVE REFRACTIVE INDEX STRUCTURE , 2011 .

[35]  C. Sabah Left-handed chiral metamaterials , 2008 .

[36]  Muharrem Karaaslan,et al.  Polarization‐insensitive FSS‐based perfect metamaterial absorbers for GHz and THz frequencies , 2014 .

[37]  Abul K. Azad,et al.  Terahertz chiral metamaterials with giant and dynamically tunable optical activity , 2012 .