Semiclassical orthogonal polynomial systems on nonuniform lattices, deformations of the Askey table, and analogues of isomonodromy
暂无分享,去创建一个
[1] P. Forrester,et al. Connection preserving deformations and q-semi-classical orthogonal polynomials , 2009, 0906.0640.
[2] Mizan Rahman,et al. Basic Hypergeometric Series , 1990 .
[3] V. B. Uvarov,et al. Classical Orthogonal Polynomials of a Discrete Variable , 1991 .
[4] Yang Chen,et al. Ladder operators and differential equations for orthogonal polynomials , 1997 .
[5] F. Nijhoff. On aq-deformation of the discrete Painlevé I equation andq-orthogonal polynomials , 1993, hep-th/9310091.
[6] Mizan Rahman,et al. Barnes and Ramanujan-type integrals on the q -linear lattice , 1994 .
[7] N. Atakishiyev,et al. On the moments of classical and related poloynomials , 1987 .
[8] Mizan Rahman. q Wilson functions of the second kind , 1986 .
[9] Masahiko Ito,et al. On a Family of Integrals that extend the Askey-Wilson Integral , 2014, 1405.3723.
[10] Murray Gerstenhaber,et al. Deformation theory and quantum groups with applications to mathematical physics : proceedings of an AMS-IMS-SIAM 1990 joint summer research conference held June 14-20 at the University of Massachusetts, Amherst, with support from the National Science Foundation , 1992 .
[11] P. Maroni,et al. The Hq-Classical Orthogonal Polynomials , 2002 .
[12] Apostolos Iatrou,et al. Integrable mappings of the plane preserving biquadratic invariant curves II , 2001 .
[13] A. Ramani,et al. On a novel q-discrete analogue of the Painlevé VI equation , 1999 .
[14] Discrete Painlev\'e equations for recurrence coefficients of orthogonal polynomials , 2005, math/0512358.
[15] M. Foupouagnigni,et al. LAGUERRE-FREUD EQUATIONS FOR THE RECURRENCE COEFFICIENTS OF THE LAGUERRE-HAHN ORTHOGONAL POLYNOMIALS ON SPECIAL NONUNIFORM LATTICES , 2003 .
[16] P. J. Forrester,et al. Discrete Painlev\'e equations, Orthogonal Polynomials on the Unit Circle and N-recurrences for averages over U(N) -- \PIIIa and \PV $\tau$-functions , 2003 .
[17] N. Witte. Biorthogonal Systems on the Unit Circle, Regular Semiclassical Weights, and the Discrete Garnier Equations , 2008, 0811.2605.
[18] Yang Chen,et al. Tau-Function Constructions of the Recurrence Coefficients of Orthogonal Polynomials , 1998 .
[19] Yang Chen,et al. Ladder Operators for q-orthogonal Polynomials , 2007, 0711.2454.
[20] An Isomonodromy Interpretation of the Hypergeometric Solution of the Elliptic Painlevé Equation (and Generalizations) , 2008, 0807.0258.
[21] M. N. Hounkonnou,et al. The factorization method for the general second-order q-difference equation and the Laguerre–Hahn polynomials on the general q-lattice , 2003 .
[22] Athanassios S. Fokas,et al. The isomonodromy approach to matric models in 2D quantum gravity , 1992 .
[23] M. Foupouagnigni,et al. On difference equations for orthogonal polynomials on nonuniform lattices1 , 2008 .
[24] Sergei K. Suslov,et al. Classical orthogonal polynomials of a discrete variable on nonuniform lattices , 1986 .
[25] Wolfgang Hahn,et al. Beiträge zur Theorie der Heineschen Reihen. Die 24 Integrale der hypergeometrischen q‐Differenzengleichung. Das q‐Analogon der Laplace‐Transformation , 1949 .
[26] H. Sakai. A q-Analog of the Garnier System , 2005 .
[27] Bi-orthogonal Polynomials on the Unit Circle, Regular Semi-Classical Weights and Integrable Systems , 2004, math/0412394.
[28] Dennis Stanton,et al. q-Taylor theorems, polynomial expansions, and interpolation of entire functions , 2003, J. Approx. Theory.
[29] Yasuhiko Yamada. Lax formalism for q-Painleve equations with affine Weyl group symmetry of type E^{(1)}_n , 2010, 1004.1687.
[30] H. Sakai,et al. Riccati solutions of discrete Painlevé equations with Weyl group symmetry of type E8(1) , 2002, nlin/0210040.
[31] Erik Koelink,et al. Review of ``Classical and quantum orthogonal polynomials in one variable. "by Mourad E.H. Ismail , 2011 .
[32] A. Ronveaux. Discrete semi-classical orthogonal polynomials: generalized Meixner , 1986 .
[33] Mourad E. H. Ismail,et al. Applications of q-Taylor theorems , 2003 .
[34] R. Askey,et al. Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials , 1985 .
[35] M. Mejri. Q-extension of some symmetrical and semi-classical orthogonal polynomials of class one , 2009 .
[36] Alphonse P. Magnus. Special nonuniform lattice ( snul ) orthogonal polynomials on discrete dense sets of points , 1995 .
[37] Barry Simon,et al. Orthogonal Polynomials on the Unit Circle , 2004, Encyclopedia of Special Functions: The Askey-Bateman Project.
[38] W. Van Assche,et al. q-Discrete Painlevé equations for recurrence coefficients of modified q-Freud orthogonal polynomials , 2008, 0808.0982.
[39] Pavel Bleher,et al. Random Matrix Models and Their Applications , 2001 .
[40] Yasuhiko Yamada. A Lax Formalism for the Elliptic Difference Painlevé Equation , 2008, 0811.1796.
[41] P. I. Pastro. Orthogonal polynomials and some q-beta integrals of Ramanujan☆ , 1985 .
[42] Sakai Hidetaka. Lax form of the q-Painlevé equation associated with the A(1)2 surface , 2006 .
[43] Plamen Simeonov,et al. Difference Equations and Discriminants for Discrete Orthogonal Polynomials , 2005 .
[44] M. .. Moore. Exactly Solved Models in Statistical Mechanics , 1983 .
[45] Athanassios S. Fokas,et al. Discrete Painlevé equations and their appearance in quantum gravity , 1991 .
[46] Willard Miller,et al. Symmetry techniques for $q$-series: Askey-Wilson polynomials , 1989 .
[47] N. S. Witte,et al. Bi-orthogonal systems on the unit circle, regular semi-classical weights and integrable systems - II , 2008, J. Approx. Theory.
[48] M. Foupouagnigni,et al. Laguerre-Freud equations for the recurrence coefficients of D semi-classical orthogonal polynomials of class one , 1998 .
[49] Mourad E. H. Ismail,et al. Discriminants and Functional Equations for Polynomials Orthogonal on the Unit Circle , 2001, J. Approx. Theory.
[50] A. Borodin,et al. τ-function of discrete isomonodromy transformations and probability , 2007, Compositio Mathematica.
[51] A. Ghressi,et al. The Symmetrical H_q-Semiclassical Orthogonal Polynomials of Class One , 2009, 0907.3851.
[52] 坂井 秀隆. Rational surfaces associated with affine root systems and geometry of the Painlevé equations , 1999 .
[53] R. S. Costas-Santos,et al. q-Classical Orthogonal Polynomials: A General Difference Calculus Approach , 2006, math/0612097.
[54] W. Hahn. Über die höheren Heineschen Reihen und eine einheitliche Theorie der sogenannten speziellen Funktionen , 1949 .
[55] Mizan Rahman,et al. The associated Askey-Wilson polynomials , 1991 .
[56] Rene F. Swarttouw,et al. The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue Report Fac , 1996, math/9602214.
[57] L. Khériji. AN INTRODUCTION TO THE Hq-SEMICLASSICAL ORTHOGONAL POLYNOMIALS , 2003 .
[58] W. Hahn. Über Orthogonalpolynome, die q-Differenzengleichungen genügen , 1949 .
[59] Yasuhiro Ohta,et al. Hypergeometric solutions to the q-painlevé equations , 2004, nlin/0403036.
[60] Elliptic Hypergeometric Solutions to Elliptic Difference Equations , 2009, 0903.4803.
[61] A. Borodin. Discrete gap probabilities and discrete Painlevé equations , 2001, math-ph/0111008.
[62] Alexei Borodin,et al. Distribution of the First Particle in Discrete Orthogonal Polynomial Ensembles , 2003 .
[63] P. Biane. Orthogonal polynomials on the unit circle, $q$-Gamma weights, and discrete Painlev\'e equations , 2009, 0901.0947.
[64] T. Koornwinder,et al. BASIC HYPERGEOMETRIC SERIES (Encyclopedia of Mathematics and its Applications) , 1991 .
[65] Tom H. Koornwinder. The structure relation for Askey-Wilson polynomials , 2007 .
[66] J. Roberts,et al. Integrable mappings of the plane preserving biquadratic invariant curves II , 2002 .
[67] A. Zhedanov,et al. Generalized Eigenvalue Problem and a New Family of Rational Functions Biorthogonal on Elliptic Grids , 2001 .
[68] P. Forrester,et al. Discrete Painlevé equations for a class of PVI τ-functions given as U(N) averages , 2004, math-ph/0412065.
[69] Tom H. Koornwinder,et al. q-Special functions , 2006 .
[70] T. Masuda,et al. Hypergeometric τ-functions of the q-Painlevé system of type $E_{8}^{(1)}$ , 2009 .
[71] A. Ronveaux,et al. Laguerre-Freud's equations for the recurrence coefficients of semi-classical orthogonal polynomials , 1994 .
[72] J. C. Medem,et al. q -Classical polynomials and the q -Askey and Nikiforov-Uvarov tableaus , 2001 .
[73] Mizan Rahman. An integral Representation of a 10 ϕ 9 and Continuous Bi-Orthogonal 10 ϕ 9 Rational Functions , 1986, Canadian Journal of Mathematics.
[74] Y. Ohta,et al. 10E9 solution to the elliptic Painlevé equation , 2003 .
[75] David R. Masson,et al. Solutions to the associated q -Askey-Wilson polynomial recurrence relation , 1993 .
[76] Sergei K. Suslov,et al. Difference Hypergeometric Functions , 1992 .
[77] M. Ismail,et al. Classical and Quantum Orthogonal Polynomials in One Variable: Bibliography , 2005 .
[78] A. Zhedanov,et al. Elliptic grids, rational functions, and the Padé interpolation , 2007 .
[79] Plamen Simeonov,et al. Q-difference Operators for Orthogonal Polynomials , 2009, J. Comput. Appl. Math..
[80] G. Bangerezako. The Fourth Order Difference Equation for the Laguerre-Hahn Polynomials Orthogonal on Special Non-uniform Lattices , 2001 .
[81] P. Forrester. Log-Gases and Random Matrices , 2010 .
[82] A. Borodin,et al. Moduli spaces of d-connections and difference Painlevé equations , 2004, math/0411584.
[83] Alphonse P. Magnus,et al. Painleve´-type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials , 1995 .
[84] The factorization method for the Askey–Wilson polynomials , 1998, math/9805143.
[85] Pascal Maroni,et al. The symmetric Dω-semi-classical orthogonal polynomials of class one , 2008, Numerical Algorithms.
[86] Ap. Magnus,et al. Associated Askey-Wilson polynomials as Laguerre-Hahn orthogonal polynomials , 1988 .
[87] T. Masuda,et al. Hypergeometric τ-Functions of the q-Painlevé System of Type E7(1) , 2009, 0903.4102.
[88] A. Magnus. Painlevé equations for semiclassical recurrence coefficients: Research problems 96-2 , 1996 .
[89] M. Jimbo,et al. A q-analog of the sixth Painlevé equation , 1995, chao-dyn/9507010.
[90] Shirley Dex,et al. JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .
[91] Isomonodromy transformations of linear systems of difference equations , 2002, math/0209144.
[92] P. Maroni,et al. The I (q,w) classical orthogonal polynomials , 2002 .
[93] Peter Lesky. Charakterisierung der q-Orthogonalpolynome in x , 2005 .
[94] Mourad E. H. Ismail,et al. Difference equations and quantized discriminants for q-orthogonal polynomials , 2003, Adv. Appl. Math..
[95] S. Suslov. The theory of difference analogues of special functions of hypergeometric type , 1989 .
[96] Rene F. Swarttouw,et al. Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.