Semiclassical orthogonal polynomial systems on nonuniform lattices, deformations of the Askey table, and analogues of isomonodromy

Abstract A 𝔻-semiclassical weight is one which satisfies a particular linear, first-order homogeneous equation in a divided-difference operator 𝔻. It is known that the system of polynomials, orthogonal with respect to this weight, and the associated functions satisfy a linear, first-order homogeneous matrix equation in the divided-difference operator termed the spectral equation. Attached to the spectral equation is a structure which constitutes a number of relations such as those arising from compatibility with the three-term recurrence relation. Here this structure is elucidated in the general case of quadratic lattices. The simplest examples of the 𝔻-semiclassical orthogonal polynomial systems are precisely those in the Askey table of hypergeometric and basic hypergeometric orthogonal polynomials. However within the 𝔻-semiclassical class it is entirely natural to define a generalization of the Askey table weights which involve a deformation with respect to new deformation variables. We completely construct the analogous structures arising from such deformations and their relations with the other elements of the theory. As an example we treat the first nontrivial deformation of the Askey–Wilson orthogonal polynomial system defined by the q-quadratic divided-difference operator, the Askey–Wilson operator, and derive the coupled first-order divided-difference equations characterizing its evolution in the deformation variable. We show that this system is a member of a sequence of classical solutions to the q-Painlevé system.

[1]  P. Forrester,et al.  Connection preserving deformations and q-semi-classical orthogonal polynomials , 2009, 0906.0640.

[2]  Mizan Rahman,et al.  Basic Hypergeometric Series , 1990 .

[3]  V. B. Uvarov,et al.  Classical Orthogonal Polynomials of a Discrete Variable , 1991 .

[4]  Yang Chen,et al.  Ladder operators and differential equations for orthogonal polynomials , 1997 .

[5]  F. Nijhoff On aq-deformation of the discrete Painlevé I equation andq-orthogonal polynomials , 1993, hep-th/9310091.

[6]  Mizan Rahman,et al.  Barnes and Ramanujan-type integrals on the q -linear lattice , 1994 .

[7]  N. Atakishiyev,et al.  On the moments of classical and related poloynomials , 1987 .

[8]  Mizan Rahman q Wilson functions of the second kind , 1986 .

[9]  Masahiko Ito,et al.  On a Family of Integrals that extend the Askey-Wilson Integral , 2014, 1405.3723.

[10]  Murray Gerstenhaber,et al.  Deformation theory and quantum groups with applications to mathematical physics : proceedings of an AMS-IMS-SIAM 1990 joint summer research conference held June 14-20 at the University of Massachusetts, Amherst, with support from the National Science Foundation , 1992 .

[11]  P. Maroni,et al.  The Hq-Classical Orthogonal Polynomials , 2002 .

[12]  Apostolos Iatrou,et al.  Integrable mappings of the plane preserving biquadratic invariant curves II , 2001 .

[13]  A. Ramani,et al.  On a novel q-discrete analogue of the Painlevé VI equation , 1999 .

[14]  Discrete Painlev\'e equations for recurrence coefficients of orthogonal polynomials , 2005, math/0512358.

[15]  M. Foupouagnigni,et al.  LAGUERRE-FREUD EQUATIONS FOR THE RECURRENCE COEFFICIENTS OF THE LAGUERRE-HAHN ORTHOGONAL POLYNOMIALS ON SPECIAL NONUNIFORM LATTICES , 2003 .

[16]  P. J. Forrester,et al.  Discrete Painlev\'e equations, Orthogonal Polynomials on the Unit Circle and N-recurrences for averages over U(N) -- \PIIIa and \PV $\tau$-functions , 2003 .

[17]  N. Witte Biorthogonal Systems on the Unit Circle, Regular Semiclassical Weights, and the Discrete Garnier Equations , 2008, 0811.2605.

[18]  Yang Chen,et al.  Tau-Function Constructions of the Recurrence Coefficients of Orthogonal Polynomials , 1998 .

[19]  Yang Chen,et al.  Ladder Operators for q-orthogonal Polynomials , 2007, 0711.2454.

[20]  An Isomonodromy Interpretation of the Hypergeometric Solution of the Elliptic Painlevé Equation (and Generalizations) , 2008, 0807.0258.

[21]  M. N. Hounkonnou,et al.  The factorization method for the general second-order q-difference equation and the Laguerre–Hahn polynomials on the general q-lattice , 2003 .

[22]  Athanassios S. Fokas,et al.  The isomonodromy approach to matric models in 2D quantum gravity , 1992 .

[23]  M. Foupouagnigni,et al.  On difference equations for orthogonal polynomials on nonuniform lattices1 , 2008 .

[24]  Sergei K. Suslov,et al.  Classical orthogonal polynomials of a discrete variable on nonuniform lattices , 1986 .

[25]  Wolfgang Hahn,et al.  Beiträge zur Theorie der Heineschen Reihen. Die 24 Integrale der hypergeometrischen q‐Differenzengleichung. Das q‐Analogon der Laplace‐Transformation , 1949 .

[26]  H. Sakai A q-Analog of the Garnier System , 2005 .

[27]  Bi-orthogonal Polynomials on the Unit Circle, Regular Semi-Classical Weights and Integrable Systems , 2004, math/0412394.

[28]  Dennis Stanton,et al.  q-Taylor theorems, polynomial expansions, and interpolation of entire functions , 2003, J. Approx. Theory.

[29]  Yasuhiko Yamada Lax formalism for q-Painleve equations with affine Weyl group symmetry of type E^{(1)}_n , 2010, 1004.1687.

[30]  H. Sakai,et al.  Riccati solutions of discrete Painlevé equations with Weyl group symmetry of type E8(1) , 2002, nlin/0210040.

[31]  Erik Koelink,et al.  Review of ``Classical and quantum orthogonal polynomials in one variable. "by Mourad E.H. Ismail , 2011 .

[32]  A. Ronveaux Discrete semi-classical orthogonal polynomials: generalized Meixner , 1986 .

[33]  Mourad E. H. Ismail,et al.  Applications of q-Taylor theorems , 2003 .

[34]  R. Askey,et al.  Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials , 1985 .

[35]  M. Mejri Q-extension of some symmetrical and semi-classical orthogonal polynomials of class one , 2009 .

[36]  Alphonse P. Magnus Special nonuniform lattice ( snul ) orthogonal polynomials on discrete dense sets of points , 1995 .

[37]  Barry Simon,et al.  Orthogonal Polynomials on the Unit Circle , 2004, Encyclopedia of Special Functions: The Askey-Bateman Project.

[38]  W. Van Assche,et al.  q-Discrete Painlevé equations for recurrence coefficients of modified q-Freud orthogonal polynomials , 2008, 0808.0982.

[39]  Pavel Bleher,et al.  Random Matrix Models and Their Applications , 2001 .

[40]  Yasuhiko Yamada A Lax Formalism for the Elliptic Difference Painlevé Equation , 2008, 0811.1796.

[41]  P. I. Pastro Orthogonal polynomials and some q-beta integrals of Ramanujan☆ , 1985 .

[42]  Sakai Hidetaka Lax form of the q-Painlevé equation associated with the A(1)2 surface , 2006 .

[43]  Plamen Simeonov,et al.  Difference Equations and Discriminants for Discrete Orthogonal Polynomials , 2005 .

[44]  M. .. Moore Exactly Solved Models in Statistical Mechanics , 1983 .

[45]  Athanassios S. Fokas,et al.  Discrete Painlevé equations and their appearance in quantum gravity , 1991 .

[46]  Willard Miller,et al.  Symmetry techniques for $q$-series: Askey-Wilson polynomials , 1989 .

[47]  N. S. Witte,et al.  Bi-orthogonal systems on the unit circle, regular semi-classical weights and integrable systems - II , 2008, J. Approx. Theory.

[48]  M. Foupouagnigni,et al.  Laguerre-Freud equations for the recurrence coefficients of D semi-classical orthogonal polynomials of class one , 1998 .

[49]  Mourad E. H. Ismail,et al.  Discriminants and Functional Equations for Polynomials Orthogonal on the Unit Circle , 2001, J. Approx. Theory.

[50]  A. Borodin,et al.  τ-function of discrete isomonodromy transformations and probability , 2007, Compositio Mathematica.

[51]  A. Ghressi,et al.  The Symmetrical H_q-Semiclassical Orthogonal Polynomials of Class One , 2009, 0907.3851.

[52]  坂井 秀隆 Rational surfaces associated with affine root systems and geometry of the Painlevé equations , 1999 .

[53]  R. S. Costas-Santos,et al.  q-Classical Orthogonal Polynomials: A General Difference Calculus Approach , 2006, math/0612097.

[54]  W. Hahn Über die höheren Heineschen Reihen und eine einheitliche Theorie der sogenannten speziellen Funktionen , 1949 .

[55]  Mizan Rahman,et al.  The associated Askey-Wilson polynomials , 1991 .

[56]  Rene F. Swarttouw,et al.  The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue Report Fac , 1996, math/9602214.

[57]  L. Khériji AN INTRODUCTION TO THE Hq-SEMICLASSICAL ORTHOGONAL POLYNOMIALS , 2003 .

[58]  W. Hahn Über Orthogonalpolynome, die q-Differenzengleichungen genügen , 1949 .

[59]  Yasuhiro Ohta,et al.  Hypergeometric solutions to the q-painlevé equations , 2004, nlin/0403036.

[60]  Elliptic Hypergeometric Solutions to Elliptic Difference Equations , 2009, 0903.4803.

[61]  A. Borodin Discrete gap probabilities and discrete Painlevé equations , 2001, math-ph/0111008.

[62]  Alexei Borodin,et al.  Distribution of the First Particle in Discrete Orthogonal Polynomial Ensembles , 2003 .

[63]  P. Biane Orthogonal polynomials on the unit circle, $q$-Gamma weights, and discrete Painlev\'e equations , 2009, 0901.0947.

[64]  T. Koornwinder,et al.  BASIC HYPERGEOMETRIC SERIES (Encyclopedia of Mathematics and its Applications) , 1991 .

[65]  Tom H. Koornwinder The structure relation for Askey-Wilson polynomials , 2007 .

[66]  J. Roberts,et al.  Integrable mappings of the plane preserving biquadratic invariant curves II , 2002 .

[67]  A. Zhedanov,et al.  Generalized Eigenvalue Problem and a New Family of Rational Functions Biorthogonal on Elliptic Grids , 2001 .

[68]  P. Forrester,et al.  Discrete Painlevé equations for a class of PVI τ-functions given as U(N) averages , 2004, math-ph/0412065.

[69]  Tom H. Koornwinder,et al.  q-Special functions , 2006 .

[70]  T. Masuda,et al.  Hypergeometric τ-functions of the q-Painlevé system of type $E_{8}^{(1)}$ , 2009 .

[71]  A. Ronveaux,et al.  Laguerre-Freud's equations for the recurrence coefficients of semi-classical orthogonal polynomials , 1994 .

[72]  J. C. Medem,et al.  q -Classical polynomials and the q -Askey and Nikiforov-Uvarov tableaus , 2001 .

[73]  Mizan Rahman An integral Representation of a 10 ϕ 9 and Continuous Bi-Orthogonal 10 ϕ 9 Rational Functions , 1986, Canadian Journal of Mathematics.

[74]  Y. Ohta,et al.  10E9 solution to the elliptic Painlevé equation , 2003 .

[75]  David R. Masson,et al.  Solutions to the associated q -Askey-Wilson polynomial recurrence relation , 1993 .

[76]  Sergei K. Suslov,et al.  Difference Hypergeometric Functions , 1992 .

[77]  M. Ismail,et al.  Classical and Quantum Orthogonal Polynomials in One Variable: Bibliography , 2005 .

[78]  A. Zhedanov,et al.  Elliptic grids, rational functions, and the Padé interpolation , 2007 .

[79]  Plamen Simeonov,et al.  Q-difference Operators for Orthogonal Polynomials , 2009, J. Comput. Appl. Math..

[80]  G. Bangerezako The Fourth Order Difference Equation for the Laguerre-Hahn Polynomials Orthogonal on Special Non-uniform Lattices , 2001 .

[81]  P. Forrester Log-Gases and Random Matrices , 2010 .

[82]  A. Borodin,et al.  Moduli spaces of d-connections and difference Painlevé equations , 2004, math/0411584.

[83]  Alphonse P. Magnus,et al.  Painleve´-type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials , 1995 .

[84]  The factorization method for the Askey–Wilson polynomials , 1998, math/9805143.

[85]  Pascal Maroni,et al.  The symmetric Dω-semi-classical orthogonal polynomials of class one , 2008, Numerical Algorithms.

[86]  Ap. Magnus,et al.  Associated Askey-Wilson polynomials as Laguerre-Hahn orthogonal polynomials , 1988 .

[87]  T. Masuda,et al.  Hypergeometric τ-Functions of the q-Painlevé System of Type E7(1) , 2009, 0903.4102.

[88]  A. Magnus Painlevé equations for semiclassical recurrence coefficients: Research problems 96-2 , 1996 .

[89]  M. Jimbo,et al.  A q-analog of the sixth Painlevé equation , 1995, chao-dyn/9507010.

[90]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[91]  Isomonodromy transformations of linear systems of difference equations , 2002, math/0209144.

[92]  P. Maroni,et al.  The I (q,w) classical orthogonal polynomials , 2002 .

[93]  Peter Lesky Charakterisierung der q-Orthogonalpolynome in x , 2005 .

[94]  Mourad E. H. Ismail,et al.  Difference equations and quantized discriminants for q-orthogonal polynomials , 2003, Adv. Appl. Math..

[95]  S. Suslov The theory of difference analogues of special functions of hypergeometric type , 1989 .

[96]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.