In Vivo Molecular Bioluminescence Imaging: New Tools and Applications.

in vivo bioluminescence imaging (BLi) is an optical molecular imaging technique used to visualize molecular and cellular processes in health and diseases and to follow the fate of cells with high sensitivity using luciferase-based gene reporters. The high sensitivity of this technique arises from efficient photon production, followed by the reaction between luciferase enzymes and luciferin substrates. Novel discoveries and developments of luciferase reporters, substrates, and gene-editing techniques, and emerging fields of applications, promise a new era of deeper and more sensitive molecular imaging.

[1]  Aldo Roda,et al.  Sensitive Dual Color In Vivo Bioluminescence Imaging Using a New Red Codon Optimized Firefly Luciferase and a Green Click Beetle Luciferase , 2011, PloS one.

[2]  J. Mullins,et al.  Photonic detection of bacterial pathogens in living hosts , 1995, Molecular microbiology.

[3]  S. Gambhir,et al.  Longitudinal, noninvasive imaging of T-cell effector function and proliferation in living subjects. , 2010, Cancer research.

[4]  W. Daily,et al.  N-Alkylated 6'-aminoluciferins are bioluminescent substrates for Ultra-Glo and QuantiLum luciferase: new potential scaffolds for bioluminescent assays. , 2008, Biochemistry.

[5]  Imaging Ca2+ activity in mammalian cells and zebrafish with a novel red-emitting aequorin variant , 2014, Pflügers Archiv - European Journal of Physiology.

[6]  Y Sakaki,et al.  Cloning and sequence analysis of cDNA for the luminescent protein aequorin. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Kowa Koida,et al.  In vivo bioluminescence and reflectance imaging of multiple organs in bioluminescence reporter mice by bundled-fiber-coupled microscopy. , 2016, Biomedical optics express.

[8]  G. Luker,et al.  Bioluminescence imaging of reporter mice for studies of infection and inflammation. , 2010, Antiviral research.

[9]  Carolyn R. Bertozzi,et al.  In vivo imaging of hydrogen peroxide production in a murine tumor model with a chemoselective bioluminescent reporter , 2010, Proceedings of the National Academy of Sciences.

[10]  G. Sapkota,et al.  Rapid generation of endogenously driven transcriptional reporters in cells through CRISPR/Cas9 , 2015, Scientific Reports.

[11]  Erik S. Welf,et al.  A bright cyan-excitable orange fluorescent protein facilitates dual-emission microscopy and enhances bioluminescence imaging in vivo , 2016, Nature Biotechnology.

[12]  K. Francis,et al.  Development of a Bioluminescent Nitroreductase Probe for Preclinical Imaging , 2015, PloS one.

[13]  B. Tannous,et al.  Gaussia luciferase reporter assay for monitoring biological processes in culture and in vivo , 2009, Nature Protocols.

[14]  M. Grossel,et al.  An enhanced chimeric firefly luciferase-inspired enzyme for ATP detection and bioluminescence reporter and imaging applications. , 2015, Analytical biochemistry.

[15]  P. Brûlet,et al.  Bioluminescent properties of obelin and aequorin with novel coelenterazine analogues , 2014, Analytical and Bioanalytical Chemistry.

[16]  Takeharu Nagai,et al.  Expanded palette of Nano-lanterns for real-time multicolor luminescence imaging , 2015, Proceedings of the National Academy of Sciences.

[17]  C. Löwik,et al.  A novel luciferase fusion protein for highly sensitive optical imaging: from single-cell analysis to in vivo whole-body bioluminescence imaging , 2014, Analytical and Bioanalytical Chemistry.

[18]  S. Nagata,et al.  Cloning and expression of cDNA for the luciferase from the marine ostracod Vargula hilgendorfii. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[19]  J. Renard,et al.  Real time imaging of transcriptional activity in live mouse preimplantation embryos using a secreted luciferase. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Christopher H Contag,et al.  Differential fates of biomolecules delivered to target cells via extracellular vesicles , 2015, Proceedings of the National Academy of Sciences.

[21]  D. Klaubert,et al.  Noninvasive molecular imaging of apoptosis in vivo using a modified firefly luciferase substrate, Z-DEVD-aminoluciferin , 2010, Cell Death and Differentiation.

[22]  Delphine A. Lacorre,et al.  Dual-Color Bioluminescence Imaging for Simultaneous Monitoring of the Intestinal Persistence of Lactobacillus plantarum and Lactococcus lactis in Living Mice , 2015, Applied and Environmental Microbiology.

[23]  D. Hanahan,et al.  A biocompatible in vivo ligation reaction and its application for noninvasive bioluminescent imaging of protease activity in living mice. , 2013, ACS chemical biology.

[24]  Yuki Takahashi,et al.  Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells in mice after intravenous injection. , 2013, Journal of biotechnology.

[25]  Imre Mäger,et al.  Extracellular vesicles: biology and emerging therapeutic opportunities , 2013, Nature Reviews Drug Discovery.

[26]  T. Hirano,et al.  Bioluminescence of beetle luciferases with 6'-amino-D-luciferin analogues reveals excited keto-oxyluciferin as the emitter and phenolate/luciferin binding site interactions modulate bioluminescence colors. , 2014, Biochemistry.

[27]  Takeharu Nagai,et al.  Luminescent proteins for high-speed single-cell and whole-body imaging , 2012, Nature Communications.

[28]  Charles W Buffington,et al.  Human plasma ATP concentration. , 2007, Clinical chemistry.

[29]  Adrian Saldanha,et al.  Structural basis for the spectral difference in luciferase bioluminescence , 2006, Nature.

[30]  H. Fraga,et al.  Thermostable red and green light-producing firefly luciferase mutants for bioluminescent reporter applications. , 2007, Analytical biochemistry.

[31]  Zhen Cheng,et al.  In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles. , 2012, Angewandte Chemie.

[32]  S. Simon,et al.  Noninvasive in vivo imaging to evaluate immune responses and antimicrobial therapy against Staphylococcus aureus and USA300 MRSA skin infections. , 2011, The Journal of investigative dermatology.

[33]  Jianghong Rao,et al.  In vivo bioluminescence imaging of furin activity in breast cancer cells using bioluminogenic substrates. , 2009, Bioconjugate chemistry.

[34]  T. Holzman,et al.  Cloning of the luciferase structural genes from Vibrio harveyi and expression of bioluminescence in Escherichia coli. , 1984, Biochemistry.

[35]  D K Stevenson,et al.  Bioluminescence for biological sensing in living mammals. , 1999, Advances in experimental medicine and biology.

[36]  Robin S. Dothager,et al.  Advances in bioluminescence imaging of live animal models. , 2009, Current opinion in biotechnology.

[37]  J. Crown,et al.  Generation of a new bioluminescent model for visualisation of mammary tumour development in transgenic mice , 2012, BMC Cancer.

[38]  M. J. Cormier,et al.  Purification and properties of Renilla reniformis luciferase. , 1977, Biochemistry.

[39]  L. Zon,et al.  zebraflash transgenic lines for in vivo bioluminescence imaging of stem cells and regeneration in adult zebrafish , 2013, Development.

[40]  Sanjiv Sam Gambhir,et al.  Consensus guided mutagenesis of Renilla luciferase yields enhanced stability and light output. , 2006, Protein engineering, design & selection : PEDS.

[41]  Peter O. Krutzik,et al.  Luminescent imaging of β-galactosidase activity in living subjects using sequential reporter-enzyme luminescence , 2006, Nature Methods.

[42]  T. Ito,et al.  Photoprotein aequorin: use as a reporter enzyme in studying gene expression in mammalian cells. , 1990, Gene.

[43]  Masafumi Oshiro,et al.  Visualizing Gene Expression in Living Mammals Using a Bioluminescent Reporter , 1997, Photochemistry and photobiology.

[44]  J. Rao,et al.  A Bioluminogenic Substrate for In Vivo Imaging of β‐Lactamase Activity , 2007 .

[45]  Frank Fan,et al.  Red-emitting luciferases for bioluminescence reporter and imaging applications. , 2010, Analytical biochemistry.

[46]  W. Moerner,et al.  A selenium analogue of firefly D-luciferin with red-shifted bioluminescence emission. , 2012, Angewandte Chemie.

[47]  Brock F. Binkowski,et al.  Engineered Luciferase Reporter from a Deep Sea Shrimp Utilizing a Novel Imidazopyrazinone Substrate , 2012, ACS chemical biology.

[48]  Yujie Lu,et al.  Small animal fluorescence and bioluminescence tomography: a review of approaches, algorithms and technology update , 2014, Physics in medicine and biology.

[49]  J. Cleveland,et al.  Fluorophore-NanoLuc BRET Reporters Enable Sensitive In Vivo Optical Imaging and Flow Cytometry for Monitoring Tumorigenesis. , 2015, Cancer research.

[50]  M. Maye,et al.  Near infrared bioluminescence resonance energy transfer from firefly luciferase—quantum dot bionanoconjugates , 2014, Nanotechnology.

[51]  K. Francis,et al.  Real-Time Bioluminescence Imaging of Mixed Mycobacterial Infections , 2014, PloS one.

[52]  Sung Bae Kim,et al.  Advances in fluorescence and bioluminescence imaging. , 2013, Analytical chemistry.

[53]  C. Lau,et al.  Visualization of in Vivo Hydrogen Sulfide Production by a Bioluminescence Probe in Cancer Cells and Nude Mice. , 2015, Analytical chemistry.

[54]  V. Verkhusha,et al.  Near-infrared bioluminescent proteins for two-color multimodal imaging , 2016, Scientific Reports.

[55]  S. Schultz-Cherry,et al.  Visualizing real-time influenza virus infection, transmission and protection in ferrets , 2015, Nature Communications.

[56]  Sanjiv S. Gambhir,et al.  Bioluminescence resonance energy transfer (BRET) imaging of protein–protein interactions within deep tissues of living subjects , 2011, Proceedings of the National Academy of Sciences.

[57]  Jennifer A. Prescher,et al.  A synthetic luciferin improves bioluminescence imaging in live mice , 2014, Nature Methods.

[58]  Y. Ohmiya,et al.  cDNA Cloning and Characterization of a Secreted Luciferase from the Luminous Japanese Ostracod, Cypridina noctiluca , 2004, Bioscience, biotechnology, and biochemistry.

[59]  C. Bertozzi,et al.  Real-time noninvasive imaging of fatty acid uptake in vivo. , 2012, ACS chemical biology.

[60]  Haruki Niwa,et al.  A luciferin analogue generating near-infrared bioluminescence achieves highly sensitive deep-tissue imaging , 2016, Nature Communications.

[61]  P. Büscher,et al.  A Panel of Trypanosoma brucei Strains Tagged with Blue and Red-Shifted Luciferases for Bioluminescent Imaging in Murine Infection Models , 2014, PLoS neglected tropical diseases.

[62]  M. Hirai,et al.  Visualization of Malaria Parasites in the Skin Using the Luciferase Transgenic Parasite, Plasmodium berghei , 2014, Tropical medicine and health.

[63]  P. Alano,et al.  Enlightening the malaria parasite life cycle: bioluminescent Plasmodium in fundamental and applied research , 2015, Front. Microbiol..

[64]  Yoshihiro Nakajima,et al.  Enhanced Beetle Luciferase for High-Resolution Bioluminescence Imaging , 2010, PloS one.

[65]  S. Jeong,et al.  Tracking of dendritic cell migration into lymph nodes using molecular imaging with sodium iodide symporter and enhanced firefly luciferase genes , 2015, Scientific Reports.

[66]  M. Maye,et al.  Novel multistep BRET-FRET energy transfer using nanoconjugates of firefly proteins, quantum dots, and red fluorescent proteins. , 2013, Nanoscale.

[67]  S. Maki,et al.  Multicolor Bioluminescence Obtained Using Firefly Luciferin. , 2016, Current topics in medicinal chemistry.

[68]  Dana Carroll,et al.  Genome engineering with targetable nucleases. , 2014, Annual review of biochemistry.

[69]  L. Montoliu,et al.  The new CRISPR–Cas system: RNA-guided genome engineering to efficiently produce any desired genetic alteration in animals , 2014, Transgenic Research.

[70]  P. Lassota,et al.  A Spontaneous Acinar Cell Carcinoma Model for Monitoring Progression of Pancreatic Lesions and Response to Treatment Through Noninvasive Bioluminescence Imaging , 2009, Clinical Cancer Research.

[71]  M. Karp,et al.  Recombinant cell-based bioluminescence assay for androgen bioactivity determination in clinical samples. , 2005, Clinical chemistry.

[72]  T. Mott,et al.  In vivo Bioluminescence Imaging of Burkholderia mallei Respiratory Infection and Treatment in the Mouse Model , 2011, Front. Microbio..

[73]  R. Negrin,et al.  Tissue-Specific Homing and Expansion of Donor NK Cells in Allogeneic Bone Marrow Transplantation1 , 2009, The Journal of Immunology.

[74]  J. Chang,et al.  ThermoMouse: an in vivo model to identify modulators of UCP1 expression in brown adipose tissue. , 2014, Cell reports.

[75]  H. Carlsen,et al.  In Vivo Imaging of NF-κB Activity1 , 2002, The Journal of Immunology.

[76]  Christian E Badr,et al.  Triple Bioluminescence Imaging for In Vivo Monitoring of Cellular Processes , 2013, Molecular therapy. Nucleic acids.

[77]  Y. Okada,et al.  A Novel Mouse Model of Soft-Tissue Infection Using Bioluminescence Imaging Allows Noninvasive, Real-Time Monitoring of Bacterial Growth , 2014, PloS one.

[78]  Maria Ericsson,et al.  Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter. , 2014, ACS nano.

[79]  J. Rao,et al.  A bioluminogenic substrate for in vivo imaging of beta-lactamase activity. , 2007, Angewandte Chemie.

[80]  Gerald C. O'Sullivan,et al.  High Resolution In Vivo Bioluminescent Imaging for the Study of Bacterial Tumour Targeting , 2012, PloS one.

[81]  Amit P Jathoul,et al.  A Dual-Color Far-Red to Near-Infrared Firefly Luciferin Analogue Designed for Multiparametric Bioluminescence Imaging , 2014, Angewandte Chemie.

[82]  K. Francis,et al.  Mouse model of chronic post‐arthroplasty infection: Noninvasive in vivo bioluminescence imaging to monitor bacterial burden for long‐term study , 2012, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[83]  R. Leahy,et al.  Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging , 2005, Physics in medicine and biology.

[84]  A. McGregor,et al.  A bright future for bioluminescent imaging in viral research. , 2015, Future virology.

[85]  U. Himmelreich,et al.  Towards non-invasive monitoring of pathogen–host interactions during Candida albicans biofilm formation using in vivo bioluminescence , 2013, Cellular microbiology.

[86]  A. Roda,et al.  Spectral-resolved gene technology for multiplexed bioluminescence and high-content screening. , 2008, Analytical chemistry.

[87]  Huiling Yang,et al.  Development of a robust luciferase reporter 1b/2a hepatitis C virus (HCV) for characterization of early stage HCV life cycle inhibitors. , 2013, Antiviral research.

[88]  C. Contag,et al.  Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo. , 2005, Journal of biomedical optics.

[89]  Alnawaz Rehemtulla,et al.  NanoLuc Reporter for Dual Luciferase Imaging in Living Animals , 2013, Molecular imaging.

[90]  S. Gambhir,et al.  A Transgenic Tri-Modality Reporter Mouse , 2013, PloS one.

[91]  C. Contag,et al.  Advances in in vivo bioluminescence imaging of gene expression. , 2002, Annual review of biomedical engineering.

[92]  Rune Blomhoff,et al.  In vivo imaging of NF-kappa B activity. , 2002, Journal of immunology.

[93]  C. Bertozzi,et al.  Strategy for dual-analyte luciferin imaging: in vivo bioluminescence detection of hydrogen peroxide and caspase activity in a murine model of acute inflammation. , 2013, Journal of the American Chemical Society.

[94]  D. M. Mofford,et al.  Aminoluciferins Extend Firefly Luciferase Bioluminescence into the Near-Infrared and Can Be Preferred Substrates over d-Luciferin , 2014, Journal of the American Chemical Society.