Comparison of H-mode pedestals in different confinement regimes in DIII-D

A survey of global performance parameters and their correlation with pedestal parameters is performed for standard H-mode, QH-mode and the enhanced confinement regimes of VH-mode, hybrid and advanced tokamak in the DIII-D tokamak. This study shows that there is a trend for global confinement quality or global beta to increase as the pedestal electron pressure or beta increases. However, there are also improvements in core confinement and beta, observed at fixed pedestal pressure or beta, which indicate that factors other than pedestal parameters also contribute to the best core performance. Several other pedestal structure parameters are found to be similar among these regimes. The scale lengths for electron pressure in the pedestal are in the range 0.8-1.6 cm at the outer midplane, most η e values are in the range 1-3 in the middle of the T e pedestal and the T e and n e pedestals tend to penetrate the same distance into the plasma.

[1]  R. D. Deranian,et al.  Progress in quantifying the edge physics of the H mode regime in DIII-D , 2000 .

[2]  R. Marchand,et al.  Finite element modelling of transport in a tokamak edge and divertor , 2002 .

[3]  T. Fujita,et al.  Thermal energy confinement properties of ELMy H mode plasmas in JT-60U , 2002 .

[4]  Tomonori Takizuka,et al.  Pedestal characteristics and extended high-βp ELMy H-mode regime in JT-60U , 2002 .

[5]  P. C. Stangeby,et al.  Comparison of H-mode barrier width with a model of neutral penetration length , 2004 .

[6]  Y. Wang,et al.  H mode confinement in Alcator C-Mod , 1997 .

[7]  C. M. Greenfield,et al.  Optimization of DIII-D advanced tokamak discharges with respect to the β limita) , 2005 .

[8]  Frank Jenko,et al.  Critical gradient formula for toroidal electron temperature gradient modes , 2001 .

[9]  D. J. Campbell,et al.  Chapter 1: Overview and summary , 1999 .

[10]  L. L. Lao,et al.  Advanced tokamak research in DIII-D , 2004 .

[11]  G. L. Campbell,et al.  Design and operation of the multipulse Thomson scattering diagnostic on DIII‐D (invited) , 1992 .

[12]  Olivier Sauter,et al.  Integrated scenario in JET using real-time profile control , 2003 .

[13]  Kozo Yamazaki,et al.  Achievement of high fusion triple product, steady-state sustainment and real-time NTM stabilization in high-βp ELMy H-mode discharges in JT-60U , 2003 .

[14]  L. L. Lao,et al.  Advances in understanding quiescent H-mode plasmas in DIII-D , 2005 .

[15]  L. L. Lao,et al.  Confinement and stability of VH-mode discharges in the DIII-D tokamak , 1992 .

[16]  C. M. Greenfield,et al.  Development, physics basis and performance projections for hybrid scenario operation in ITER on DIII-D , 2005 .

[17]  Martin Jakobi,et al.  Transport into and across the scrape-off layer in the ASDEX Upgrade divertor tokamak , 2002 .

[18]  Jerry M. Kinsey,et al.  BURNING PLASMA PROJECTIONS USING DRIFT WAVE TRANSPORT MODELS AND SCALINGS FOR THE H-MODE PEDESTAL , 2002 .

[19]  W. Treutterer,et al.  Effect of Plasma Shape Variation on ELMs and H-Mode Pedestal Properties in ASDEX Upgrade , 2000 .

[20]  Martin Jakobi,et al.  Steady state advanced scenarios at ASDEX Upgrade , 2002 .

[21]  M. R. Wade,et al.  High performance stationary discharges in the DIII-D tokamak , 2004 .

[22]  L. L. Lao,et al.  Very high confinement discharges in DIII‐D after boronization , 1992 .