High performance flexible sensor based on inorganic nanomaterials

Abstract In recent years, the rapid development of flexible electronic devices indicates their attractive perspective in various applications where flexibility, space savings, or production constraints limit the serviceability of rigid circuit boards or hand wiring. While sensors, as the important components in such multifunctional devices, also required to be flexible and robust for integration. In addition, with the emergency of smart sensor networks, low cost, low energy consumption and easy-fabrication sensors with various functions are demanded urgently. Compared with the flexible organic electronic sensors, inorganic nanomaterials based sensors with long life-time and the high carrier mobility have been attracting the interest of researchers, and the tremendous progress has been made for developing the flexible, high-performance inorganic materials based sensors. In this article, we review the recent advancements of some important inorganic materials in various sensing applications, including carbon material and some transition metal oxides.

[1]  R. Ruoff,et al.  Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties , 2000, Physical review letters.

[2]  Yifan Gao,et al.  Piezoelectric potential gated field-effect transistor based on a free-standing ZnO wire. , 2009, Nano letters.

[3]  John A. Rogers,et al.  Inorganic Semiconductors for Flexible Electronics , 2007 .

[4]  P. Ajayan,et al.  Flexible piezoelectric ZnO-paper nanocomposite strain sensor. , 2010, Small.

[5]  E. S. Snow,et al.  Chemical Detection with a Single-Walled Carbon Nanotube Capacitor , 2005, Science.

[6]  C. Mao,et al.  Fluorescent carbon nanoparticles derived from candle soot. , 2007, Angewandte Chemie.

[7]  Doris Vollmer,et al.  Candle Soot as a Template for a Transparent Robust Superamphiphobic Coating , 2012, Science.

[8]  Yifan Gao,et al.  Mechanical-electrical triggers and sensors using piezoelectric micowires/nanowires. , 2008, Nano letters.

[9]  K. Besteman,et al.  Enzyme-Coated Carbon Nanotubes as Single-Molecule Biosensors , 2003 .

[10]  Bin Chen,et al.  Pore structure of raw and purified HiPco single-walled carbon nanotubes , 2002 .

[11]  Cees Dekker,et al.  Optimizing the signal-to-noise ratio for biosensing with carbon nanotube transistors. , 2009, Nano letters.

[12]  Charles M Lieber,et al.  Fundamental electronic properties and applications of single-walled carbon nanotubes. , 2002, Accounts of chemical research.

[13]  Jean-Christophe P. Gabriel,et al.  Flexible Nanotube Electronics , 2003 .

[14]  M. Hon,et al.  Sensitivity properties of a novel NO2 gas sensor based on mesoporous WO3 thin film , 2003 .

[15]  R. A. McGill,et al.  Nerve agent detection using networks of single-walled carbon nanotubes , 2003 .

[16]  Robert C. Haddon,et al.  Chemically Functionalized Single-Walled Carbon Nanotubes as Ammonia Sensors† , 2004 .

[17]  Chandrakant D. Lokhande,et al.  Liquefied petroleum gas (LPG) sensor properties of interconnected web-like structured sprayed TiO2 films , 2008 .

[18]  Wei-Chih Hsu,et al.  A smart medication system using wireless sensor network technologies , 2011 .

[19]  Highly sensitive NO2 sensor array based on undecorated single-walled carbon nanotube monolayer junctions , 2008 .

[20]  Chen Xu,et al.  Rectangular bunched rutile TiO2 nanorod arrays grown on carbon fiber for dye-sensitized solar cells. , 2012, Journal of the American Chemical Society.

[21]  Yugang Sun,et al.  Electrodeposition of Pd nanoparticles on single-walled carbon nanotubes for flexible hydrogen sensors , 2007 .

[22]  A. Galal,et al.  Simultaneous determination of paracetamol and neurotransmitters in biological fluids using a carbon paste sensor modified with gold nanoparticles , 2011 .

[23]  P. Kapur,et al.  Performance Comparisons Between Cu/Low-$\kappa$ , Carbon-Nanotube, and Optics for Future On-Chip Interconnects , 2008, IEEE Electron Device Letters.

[24]  K. Varahramyan,et al.  SnO 2 nanoparticle-based passive capacitive sensor for ethylene detection , 2012 .

[25]  Zhong Lin Wang,et al.  Flexible piezotronic strain sensor. , 2008, Nano letters.

[26]  Mikhail Kozlov,et al.  Flexible carbon nanotube sensors for nerve agent simulants , 2006, Nanotechnology.

[27]  Deron A. Walters,et al.  Elastic strain of freely suspended single-wall carbon nanotube ropes , 1999 .

[28]  Won Il Park,et al.  Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors , 2011 .

[29]  Tomoaki Ikegami,et al.  Improvement in the sensitivity of SnO2 thin film based NOx gas sensor by loading with single-walled carbon nanotube prepared by pulsed laser deposition process , 2008 .

[30]  J C Grossman,et al.  Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams. , 2009, Nature nanotechnology.

[31]  P. Su,et al.  Flexible humidity sensor based on TiO2 nanoparticles-polypyrrole-poly-[3-(methacrylamino)propyl] trimethyl ammonium chloride composite materials , 2008 .

[32]  A. Star,et al.  Carbon Nanotube Field‐Effect‐Transistor‐Based Biosensors , 2007 .

[33]  John A Rogers,et al.  Molecular scale buckling mechanics in individual aligned single-wall carbon nanotubes on elastomeric substrates. , 2008, Nano letters.

[34]  John A. Rogers,et al.  Highly Bendable, Transparent Thin‐Film Transistors That Use Carbon‐Nanotube‐Based Conductors and Semiconductors with Elastomeric Dielectrics , 2006 .

[35]  Jun Zhang,et al.  Self-cleaning flexible infrared nanosensor based on carbon nanoparticles. , 2011, ACS nano.

[36]  Yonggang Huang,et al.  Stretchable and Foldable Silicon Integrated Circuits , 2008, Science.

[37]  J. Rogers,et al.  Ultrathin Films of Single‐Walled Carbon Nanotubes for Electronics and Sensors: A Review of Fundamental and Applied Aspects , 2009 .

[38]  W. Stark,et al.  Large-scale production of carbon-coated copper nanoparticles for sensor applications , 2006, Nanotechnology.

[39]  M. Aono,et al.  Enhancing the humidity sensitivity of Ga2O3 /SnO2 core/shell microribbon by applying mechanical strain and its application as a flexible strain sensor. , 2012, Small.

[40]  Tae Joon Seok,et al.  Roll-to-roll anodization and etching of aluminum foils for high-throughput surface nanotexturing. , 2011, Nano letters.

[41]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[42]  K. Hata,et al.  A stretchable carbon nanotube strain sensor for human-motion detection. , 2011, Nature nanotechnology.

[43]  Fei Xiao,et al.  Growth of Metal–Metal Oxide Nanostructures on Freestanding Graphene Paper for Flexible Biosensors , 2012 .

[44]  Ji-Yong Park,et al.  Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. , 2005, Physical review letters.

[45]  Kyung Soo Park,et al.  On-chip fabrication of ZnO-nanowire gas sensor with high gas sensitivity , 2009 .

[46]  A. Niknejad,et al.  Extremely bendable, high-performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications. , 2012, Nano letters.

[47]  Raffaele Cerulli,et al.  Exact and heuristic methods to maximize network lifetime in wireless sensor networks with adjustable sensing ranges , 2012, Eur. J. Oper. Res..

[48]  Shengfu Wang,et al.  Carbon-coated nickel magnetic nanoparticles modified electrodes as a sensor for determination of acetaminophen , 2007 .

[49]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[50]  R. Superfine,et al.  Bending and buckling of carbon nanotubes under large strain , 1997, Nature.

[51]  J A Rogers,et al.  Toward Paperlike Displays , 2001, Science.

[52]  Yonggang Huang,et al.  Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability , 2011, Proceedings of the National Academy of Sciences.

[53]  C. Hierold,et al.  Fabrication of single-walled carbon-nanotube-based pressure sensors. , 2006, Nano letters.

[54]  E. Snow,et al.  Role of defects in single-walled carbon nanotube chemical sensors. , 2006, Nano letters.

[55]  Jijun Zhao,et al.  Gas molecule adsorption in carbon nanotubes and nanotube bundles , 2002 .

[56]  T. N. Todorov,et al.  Carbon nanotubes as long ballistic conductors , 1998, Nature.

[57]  Bong Hoon Kim,et al.  Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates. , 2011, Nano letters.

[58]  Qisheng Ding,et al.  Wireless Sensor Network for Continuous Monitoring Water Quality in Aquaculture Farm , 2010 .

[59]  Yulin Deng,et al.  Polymer functionalized piezoelectric-FET as humidity/chemical nanosensors , 2007 .

[60]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[61]  Zhong Lin Wang,et al.  Piezoelectric-potential-controlled polarity-reversible Schottky diodes and switches of ZnO wires. , 2008, Nano letters.

[62]  B. Zhang,et al.  An ultrasensitive and low-cost graphene sensor based on layer-by-layer nano self-assembly , 2011 .

[63]  Yonggang Huang,et al.  Printed Assemblies of Inorganic Light-Emitting Diodes for Deformable and Semitransparent Displays , 2009, Science.

[64]  B. H. Weiller,et al.  Practical chemical sensors from chemically derived graphene. , 2009, ACS nano.

[65]  G. Choi,et al.  Electrical and CO gas sensing properties of layered ZnO–CuO sensor , 2000 .

[66]  Mark J. Schulz,et al.  A carbon nanotube strain sensor for structural health monitoring , 2006 .

[67]  Alexander Star,et al.  Interaction of Aromatic Compounds with Carbon Nanotubes: Correlation to the Hammett Parameter of the Substituent and Measured Carbon Nanotube FET Response , 2003 .

[68]  Wei Chen,et al.  New aspects of the metal-insulator transition in single-domain vanadium dioxide nanobeams. , 2009, Nature nanotechnology.

[69]  Evgheni Strelcov,et al.  Gas sensor based on metal-insulator transition in VO2 nanowire thermistor. , 2009, Nano letters.

[70]  S. Lemay,et al.  Single‐Walled Carbon Nanotubes as Templates and Interconnects for Nanoelectrodes , 2006 .

[71]  Cees Dekker,et al.  Identifying the mechanism of biosensing with carbon nanotube transistors. , 2008, Nano letters.

[72]  S. Roth,et al.  Transparent and flexible carbon nanotube/polypyrrole and carbon nanotube/polyaniline pH sensors , 2006 .

[73]  Xiaoling He,et al.  Electric field drives the nonlinear resonance of a piezoelectric nanowire , 2007 .

[74]  S. Roth,et al.  Transparent and flexible carbon nanotube/polyaniline pH sensors , 2006 .

[75]  Qing Peng,et al.  Fe2O3/ZnO core–shell nanorods for gas sensors , 2006 .

[76]  Hongjie Dai,et al.  Carbon nanotubes: synthesis, integration, and properties. , 2002, Accounts of chemical research.

[77]  James F. Rusling,et al.  Carbon Nanotubes for Electronic and Electrochemical Detection of Biomolecules , 2007, Advanced materials.

[78]  Zhong Lin Wang,et al.  Enhancing sensitivity of a single ZnO micro-/nanowire photodetector by piezo-phototronic effect. , 2010, ACS nano.

[79]  Zhongqing Wei,et al.  Reduced graphene oxide molecular sensors. , 2008, Nano letters.

[80]  Yong‐Lai Zhang,et al.  Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device , 2012 .

[81]  Metin Sitti,et al.  Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing , 2010, Proceedings of the National Academy of Sciences.

[82]  Young Min Jhon,et al.  Directed assembly of carbon nanotubes on soft substrates for use as a flexible biosensor array , 2008, Nanotechnology.

[83]  Zhong Lin Wang Piezotronic and Piezophototronic Effects , 2010 .

[84]  Ya‐Ping Sun,et al.  Carbon dots for optical imaging in vivo. , 2009, Journal of the American Chemical Society.

[85]  E. Pop,et al.  Thermal conductance of an individual single-wall carbon nanotube above room temperature. , 2005, Nano letters.

[86]  Zhiyong Fan,et al.  Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. , 2009, Nature materials.

[87]  John A. Rogers,et al.  Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes , 2009, Science.

[88]  René Kizek,et al.  Electrochemical study of S–nitrosoglutathione and nitric oxide by carbon fibre NO sensor and cyclic voltammetry – possible way of monitoring of nitric oxide , 2006 .

[89]  M. Zheng,et al.  DNA-assisted dispersion and separation of carbon nanotubes , 2003, Nature materials.

[90]  Roger Taylor,et al.  The chemistry of fullerenes , 1995, Nature.

[91]  Hongjie Dai,et al.  Functionalized Carbon Nanotubes for Molecular Hydrogen Sensors , 2001 .

[92]  Alan Gelperin,et al.  DNA-decorated carbon nanotubes for chemical sensing. , 2005 .

[93]  Yong Ding,et al.  External‐Strain Induced Insulating Phase Transition in VO2 Nanobeam and Its Application as Flexible Strain Sensor , 2010, Advanced materials.

[94]  Phaedon Avouris,et al.  Molecular electronics with carbon nanotubes. , 2002, Accounts of chemical research.

[95]  Dekker,et al.  High-field electrical transport in single-wall carbon nanotubes , 1999, Physical review letters.

[96]  E. Snow,et al.  Chemical vapor detection using single-walled carbon nanotubes. , 2006, Chemical Society reviews.

[97]  John A Rogers,et al.  Printed arrays of aligned GaAs wires for flexible transistors, diodes, and circuits on plastic substrates. , 2006, Small.

[98]  Junya Suehiro,et al.  Controlled fabrication of carbon nanotube NO2 gas sensor using dielectrophoretic impedance measurement , 2005 .

[99]  Hsueh-Chun Lin,et al.  Using Wireless Sensor Network on Real-Time Remote Monitoring of the Load Cell for Landslide , 2011 .

[100]  H. Dai,et al.  Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching. , 2003, Physical review letters.

[101]  Jun Zhou,et al.  High‐Strain Sensors Based on ZnO Nanowire/Polystyrene Hybridized Flexible Films , 2011, Advanced materials.

[102]  Heung Cho Ko,et al.  A hemispherical electronic eye camera based on compressible silicon optoelectronics , 2008, Nature.

[103]  George Grüner Carbon nanotube transistors for biosensing applications. , 2005 .

[104]  Daizhi Kuang,et al.  A graphene oxide-based electrochemical sensor for sensitive determination of 4-nitrophenol. , 2012, Journal of hazardous materials.

[105]  Liqiong Wu,et al.  Reduced graphene oxide electrically contacted graphene sensor for highly sensitive nitric oxide detection. , 2011, ACS nano.

[106]  Yang Yang,et al.  High-throughput solution processing of large-scale graphene. , 2009, Nature nanotechnology.

[107]  Zhong‐Lin Wang,et al.  Strain‐Gated Piezotronic Logic Nanodevices , 2010, Advanced materials.

[108]  Suo Bai,et al.  Synthesis of high crystallinity ZnO nanowire array on polymer substrate and flexible fiber-based sensor. , 2011, ACS applied materials & interfaces.

[109]  Chen Xu,et al.  Self‐heating and External Strain Coupling Induced Phase Transition of VO2 Nanobeam as Single Domain Switch , 2011, Advanced materials.

[110]  H. Fukunaga,et al.  A carbon nanotube/polymer strain sensor with linear and anti-symmetric piezoresistivity , 2011 .

[111]  A. Javey,et al.  Large scale, highly ordered assembly of nanowire parallel arrays by differential roll printing , 2007 .

[112]  Zhong Lin Wang,et al.  Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization. , 2009, Applied physics letters.

[113]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[114]  Wei-Guo Song,et al.  Characterization of partially reduced graphene oxide as room temperature sensor for H2. , 2011, Nanoscale.

[115]  Zhong Lin Wang,et al.  Gigantic enhancement in sensitivity using Schottky contacted nanowire nanosensor. , 2009, Journal of the American Chemical Society.

[116]  Shiming Liang,et al.  Trimethylamine sensing properties of sensors based on MoO3 microrods , 2010 .

[117]  R. Kaner,et al.  Honeycomb carbon: a review of graphene. , 2010, Chemical reviews.

[118]  Zhiyong Fan,et al.  Large-scale, heterogeneous integration of nanowire arrays for image sensor circuitry , 2008, Proceedings of the National Academy of Sciences.

[119]  R. Ruoff,et al.  All-organic vapor sensor using inkjet-printed reduced graphene oxide. , 2010, Angewandte Chemie.

[120]  Xingzhong Zhao,et al.  Solution-gated graphene field effect transistors integrated in microfluidic systems and used for flow velocity detection. , 2012, Nano letters.

[121]  Jaehwan Kim,et al.  Conductometric glucose biosensor made with cellulose and tin oxide hybrid nanocomposite , 2011 .

[122]  Zhong Lin Wang,et al.  Microfibre–nanowire hybrid structure for energy scavenging , 2008, Nature.

[123]  V. Popov Carbon Nanotubes: Properties and Applications , 2006 .

[124]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[125]  Akshay M. Phulgirkar,et al.  Flexible, all-organic chemiresistor for detecting chemically aggressive vapors. , 2012, Journal of the American Chemical Society.

[126]  Priscilla Kailian Ang,et al.  Solution-gated epitaxial graphene as pH sensor. , 2008, Journal of the American Chemical Society.