Cell-type-specific H+-ATPase activity and antioxidant enzymes improve the Echinacea purpurea L. Moench tolerance to salinity stress at different NO3-/NH4+ ratios

[1]  S. Shabala,et al.  Increasing medicinal and phytochemical compounds of coneflower (Echinacea purpurea L.) as affected by NO3−/NH4+ ratio and perlite particle size in hydroponics , 2021, Scientific Reports.

[2]  S. Shabala,et al.  Optimizing hydroponic culture media and NO3−/NH4+ ratio for improving essential oil compositions of purple coneflower (Echinacea purpurea L.) , 2021, Scientific Reports.

[3]  R. Erenler,et al.  Green synthesis of silver nanoparticles from Echinacea purpurea (L.) Moench with antioxidant profile , 2021, Particulate Science and Technology.

[4]  S. Shabala,et al.  Perlite particle size and NO3-/NH4+ ratio affect growth and chemical composition of purple coneflower (Echinacea purpurea L.) in hydroponics , 2021 .

[5]  P. Soudant,et al.  Effect of Salinity and Nitrogen Form in Irrigation Water on Growth, Antioxidants and Fatty Acids Profiles in Halophytes Salsola australis, Suaeda maritima, and Enchylaena tomentosa for a Perspective of Biosaline Agriculture , 2021, Agronomy.

[6]  A. Rahimi,et al.  Improving growth properties and phytochemical compounds of Echinacea purpurea (L.) medicinal plant using novel nitrogen slow release fertilizer under greenhouse conditions , 2020, Scientific Reports.

[7]  Jong‐Ho Kim,et al.  Sustainable Nanosheet Antioxidants for Sepsis Therapy via Scavenging Intracellular Reactive Oxygen and Nitrogen Species. , 2020, ACS nano.

[8]  T. Behl,et al.  Determination of the Total Polyphenols Content and Antioxidant Activity of Echinacea Purpurea Extracts Using Newly Manufactured Glassy Carbon Electrodes Modified with Carbon Nanotubes , 2020, Processes.

[9]  Hong Wu,et al.  Changes of Phenolic Acids and Antioxidant Activities in Diploid and Tetraploid Echinacea purpurea at Different Growth Stages , 2020, Revista Brasileira de Farmacognosia.

[10]  Hong Liu,et al.  Short-term transcriptomic responses of Populus euphratica roots and leaves to drought stress , 2020, Journal of Forestry Research.

[11]  K. Hemmati,et al.  Effects of silicon on some phytochemical traits of purple coneflower (Echinacea purpurea L.) under salinity , 2020 .

[12]  L. Milella,et al.  Comparison of different green-extraction techniques and determination of the phytochemical profile and antioxidant activity of Echinacea angustifolia L. extracts. , 2019, Phytochemical analysis : PCA.

[13]  M. Mikulič-Petkovšek,et al.  Which Plant Part of Purple Coneflower (Echinacea purpurea (L.) Moench) Should be Used for Tea and Which for Tincture? , 2019, Journal of medicinal food.

[14]  E. Gondek,et al.  Active polyphenolic compounds, nutrient contents and antioxidant capacity of extruded fish feed containing purple coneflower (Echinacea purpurea (L.) Moench.) , 2016, Saudi journal of biological sciences.

[15]  B. Salehi,et al.  Echinacea plants as antioxidant and antibacterial agents: From traditional medicine to biotechnological applications , 2018, Phytotherapy research : PTR.

[16]  M. Gerami,et al.  Effect of sodium nitroprusside (SNP) on some of biochemical characteristics of purple coneflower [Echinacea purpurea (L.) Moench] under salinity stress , 2018 .

[17]  J. Tang,et al.  Optimizing co-culture conditions of adventitious roots of Echinacea pallida and Echinacea purpurea in air-lift bioreactor systems , 2018 .

[18]  Rania Youssif Elmantawy Physiological Role of Antioxidants in Improving Growth and Productivity of Sunflower under Different Sources of Nitrogen Fertilizers , 2017 .

[19]  P. Kilmartin,et al.  Electrochemical Determination of the Antioxidant Activity in Echinacea Purpurea Roots Using Square Wave Voltammetry , 2017 .

[20]  U. Roessner,et al.  Cell-Type-Specific H+-ATPase Activity in Root Tissues Enables K+ Retention and Mediates Acclimation of Barley (Hordeum vulgare) to Salinity Stress1[OPEN] , 2016, Plant Physiology.

[21]  A. Rab,et al.  Light-induced biochemical variations in secondary metabolite production and antioxidant activity in callus cultures of Stevia rebaudiana (Bert). , 2016, Journal of photochemistry and photobiology. B, Biology.

[22]  S. Shabala,et al.  Polyamines cause plasma membrane depolarization, activate Ca2+-, and modulate H+-ATPase pump activity in pea roots. , 2014, Journal of experimental botany.

[23]  C. Fizames,et al.  Molecular biology of K+ transport across the plant cell membrane: what do we learn from comparison between plant species? , 2014, Journal of plant physiology.

[24]  S. Shabala Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. , 2013, Annals of botany.

[25]  C. L. Chen,et al.  Growth performance and antioxidant capacity of broilers supplemented with Echinacea purpurea L. in the diet , 2012 .

[26]  M. Petrova,et al.  Morphological evaluation and antioxidant activity of in vitro- and in vivo-derived Echinacea purpurea plants , 2012, Central European Journal of Biology.

[27]  Sheng-Dun Lin,et al.  Caffeic acid derivatives, total phenols, antioxidant and antimutagenic activities of Echinacea purpurea flower extracts , 2012 .

[28]  F. Daayf,et al.  Differential physiological and biochemical responses of three Echinacea species to salinity stress , 2012 .

[29]  P. Nissen,et al.  P-type ATPases. , 2011, Annual review of biophysics.

[30]  M. Barzegar,et al.  An Investigation on the Antioxidant Activities of Hyssopus officinalis L. and Echinacea purpurea L. Plant Extracts in Oil Model System , 2011 .

[31]  K. Ramaiah Pharmacological Importance Of Echinacea Purpurea , 2011 .

[32]  P. R. Moghaddam,et al.  EFFECT OF OSMOTIC AND SALINITY STRESSES ON GERMINATION AND SEEDLING GROWTH INDICES OF ARTICHOKE(CYNARA SCOOLYMUS) AND PURPLE CONEFLOWER (ECHINACEA PURPUREA) , 2010 .

[33]  M. Lazić,et al.  Antioxidant and Antimicrobial Activities of Echinacea (Echinacea purpurea L.) Extracts Obtained by Classical and Ultrasound Extraction , 2009 .

[34]  Daniel L. Mace,et al.  Cell Identity Mediates the Response of Arabidopsis Roots to Abiotic Stress , 2008, Science.

[35]  J. Bernatonienė,et al.  Antioxidative activity of Ginkgo, Echinacea, and Ginseng tinctures. , 2007, Medicina.

[36]  G. Kogan,et al.  Antioxidant capacity changes and phenolic profile of Echinacea purpurea, nettle (Urtica dioica L.), and dandelion (Taraxacum officinale) after application of polyamine and phenolic biosynthesis regulators. , 2007, Journal of agricultural and food chemistry.

[37]  L. Skibsted,et al.  Antioxidant activity of cichoric acid and alkamides from Echinacea purpurea, alone and in combination , 2007 .

[38]  N. Cech,et al.  Liver enzyme-mediated oxidation of Echinacea purpurea alkylamides: production of novel metabolites and changes in immunomodulatory activity. , 2006, Planta medica.

[39]  M. Dixon,et al.  Greenhouse production of Echinacea purpurea (L.) and E. angustifolia using different growing media, NO3−/NH4+ ratios and watering regimes , 2006 .

[40]  K. Ahn,et al.  Antioxidant and immuno-enhancing effects of Echinacea purpurea (American herb) in vivo , 2005 .

[41]  S. Benvenuti,et al.  Analysis of phenolic compounds and radical scavenging activity of Echinacea spp. , 2004, Journal of pharmaceutical and biomedical analysis.

[42]  S. Passi,et al.  L1 effects on reactive oxygen (ROS) and nitrogen species (RNS) release, hemoglobin oxidation, low molecular weight antioxidants, and antioxidant enzyme activities in red and white blood cells of thalassemic patients. , 2000, Transfusion Science.

[43]  R. Bauer,et al.  Enzymatic degradation of cichoric acid in Echinacea purpurea preparations. , 2000, Journal of natural products.

[44]  D. Kitts,et al.  STUDIES ON THE ANTIOXIDANT ACTIVITY OF ECHINACEA ROOT EXTRACT , 2000 .

[45]  G. Kohlmaier,et al.  Apoplastic antioxidants as decisive elimination factors within the uptake process of nitrogen dioxide into leaf tissues. , 1993, The New phytologist.