Transport of cystine across xC- antiporter.

[1]  G. Vriend,et al.  Homology modeling. , 2020, Methods of biochemical analysis.

[2]  Torsten Schwede,et al.  SWISS-MODEL: homology modelling of protein structures and complexes , 2018, Nucleic Acids Res..

[3]  J. Roh,et al.  Aspirin plus sorafenib potentiates cisplatin cytotoxicity in resistant head and neck cancer cells through xCT inhibition , 2017, Free radical biology & medicine.

[4]  P. Gunning,et al.  Abstract P3-03-13: Chronic inhibition of signal transducer and activator of transcription 3/5 in treatment-resistant human breast cancer cell subtypes: Convergence on the reactive oxyten species/SUMOylation pathway and its effects on xCT expression and system xc-activity , 2017 .

[5]  P. Mantyh,et al.  The cystine/glutamate antiporter system xc− drives breast tumor cell glutamate release and cancer-induced bone pain , 2016, Pain.

[6]  Y. C. Long,et al.  Crosstalk between cystine and glutathione is critical for the regulation of amino acid signaling pathways and ferroptosis , 2016, Scientific Reports.

[7]  Peng Huang,et al.  Abstract 3073: Targeting chronic lymphocytic leukemia by interfering glutathione synthesis using a novel therapeutic enzyme cyst(e)inase (AEB3103) , 2016 .

[8]  M. Palacín,et al.  Heteromeric amino acid transporters. In search of the molecular bases of transport cycle mechanisms. , 2016, Biochemical Society transactions.

[9]  R. Kuick,et al.  Effector T Cells Abrogate Stroma-Mediated Chemoresistance in Ovarian Cancer , 2016, Cell.

[10]  K. Akashi,et al.  The EGF Receptor Promotes the Malignant Potential of Glioma by Regulating Amino Acid Transport System xc(-). , 2016, Cancer research.

[11]  Pratyush Tiwary,et al.  Prediction of Protein-Ligand Binding Poses via a Combination of Induced Fit Docking and Metadynamics Simulations. , 2016, Journal of chemical theory and computation.

[12]  P. Nordlund,et al.  Understanding transport by the major facilitator superfamily (MFS): structures pave the way , 2016, Nature Reviews Molecular Cell Biology.

[13]  Ivet Bahar,et al.  Energy landscape of LeuT from molecular simulations. , 2015, The Journal of chemical physics.

[14]  E. Padan,et al.  NhaA: A Unique Structural Fold of Secondary Active Transporters , 2015 .

[15]  Peng Huang,et al.  Xc- inhibitor sulfasalazine sensitizes colorectal cancer to cisplatin by a GSH-dependent mechanism. , 2015, Cancer letters.

[16]  C. Geisler,et al.  Human CD4+ T cells require exogenous cystine for glutathione and DNA synthesis , 2015, Oncotarget.

[17]  H. Weinstein,et al.  Functional mechanisms of neurotransmitter transporters regulated by lipid-protein interactions of their terminal loops. , 2015, Biochimica et biophysica acta.

[18]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[19]  Fangqiang Zhu,et al.  Conformational Changes in Two Inter-Helical Loops of Mhp1 Membrane Transporter , 2015, PloS one.

[20]  J. Mccammon,et al.  Accelerated molecular dynamics simulations of ligand binding to a muscarinic G-protein-coupled receptor , 2015, Quarterly Reviews of Biophysics.

[21]  M. Nandave,et al.  Emerging roles of system antiporter and its inhibition in CNS disorders , 2015, Molecular membrane biology.

[22]  Mahmoud Moradi,et al.  Computational characterization of structural dynamics underlying function in active membrane transporters. , 2015, Current opinion in structural biology.

[23]  T. Vanderah,et al.  (277) The cystine-glutamate antiporter system xc- drives tumor cell glutamate release and cancer-induced bone pain , 2015 .

[24]  L. Di,et al.  NFκB up-regulation of glucose transporter 3 is essential for hyperactive mammalian target of rapamycin-induced aerobic glycolysis and tumor growth. , 2015, Cancer letters.

[25]  J. Heggdal,et al.  Drug repurposing: sulfasalazine sensitizes gliomas to gamma knife radiosurgery by blocking cystine uptake through system Xc−, leading to glutathione depletion , 2015, Oncogene.

[26]  Sunhwan Jo,et al.  CHARMM‐GUI Membrane Builder toward realistic biological membrane simulations , 2014, J. Comput. Chem..

[27]  Z. Qin,et al.  Targeting xCT, a cystine-glutamate transporter induces apoptosis and tumor regression for KSHV/HIV-associated lymphoma , 2014, Journal of Hematology & Oncology.

[28]  Andrea Cavalli,et al.  Steered Molecular Dynamics Simulations for Studying Protein-Ligand Interaction in Cyclin-Dependent Kinase 5 , 2014, J. Chem. Inf. Model..

[29]  Giovanni Ciccotti,et al.  Dynamical Non-Equilibrium Molecular Dynamics , 2013, Entropy.

[30]  Milton H. Saier,et al.  The Transporter Classification Database , 2013, Nucleic Acids Res..

[31]  Yigong Shi Common folds and transport mechanisms of secondary active transporters. , 2013, Annual review of biophysics.

[32]  D. Fotiadis,et al.  The SLC3 and SLC7 families of amino acid transporters. , 2013, Molecular aspects of medicine.

[33]  Peter M. Kasson,et al.  GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit , 2013, Bioinform..

[34]  P. Kalivas,et al.  The cystine/glutamate antiporter system x(c)(-) in health and disease: from molecular mechanisms to novel therapeutic opportunities. , 2013, Antioxidants & redox signaling.

[35]  Alexander D. MacKerell,et al.  Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. , 2012, Journal of chemical theory and computation.

[36]  Yigong Shi,et al.  Structure and mechanism of a glutamate–GABA antiporter , 2012, Nature.

[37]  Carl Caleman,et al.  GROMACS molecule & liquid database , 2012, Bioinform..

[38]  R. Bridges,et al.  System xc‐ cystine/glutamate antiporter: an update on molecular pharmacology and roles within the CNS , 2012, British journal of pharmacology.

[39]  J. Kästner Umbrella sampling , 2011 .

[40]  Hyeon Joo,et al.  OPM database and PPM web server: resources for positioning of proteins in membranes , 2011, Nucleic Acids Res..

[41]  G. Portella,et al.  Molecular basis of substrate-induced permeation by an amino acid antiporter , 2011, Proceedings of the National Academy of Sciences.

[42]  Bert L. de Groot,et al.  g_wham—A Free Weighted Histogram Analysis Implementation Including Robust Error and Autocorrelation Estimates , 2010 .

[43]  Alexander D. MacKerell,et al.  Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. , 2010, The journal of physical chemistry. B.

[44]  Yigong Shi,et al.  Mechanism of substrate recognition and transport by an amino acid antiporter , 2010, Nature.

[45]  E. Gouaux,et al.  Structure and Mechanism of a Na+-Independent Amino Acid Transporter , 2009, Science.

[46]  Alexander D. MacKerell,et al.  CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields , 2009, J. Comput. Chem..

[47]  Taehoon Kim,et al.  CHARMM‐GUI: A web‐based graphical user interface for CHARMM , 2008, J. Comput. Chem..

[48]  P. Gout,et al.  The x  c− cystine/glutamate antiporter: A potential target for therapy of cancer and other diseases , 2008, Journal of cellular physiology.

[49]  V. Ganapathy,et al.  Expression of the cystine-glutamate exchanger (xc−) in retinal ganglion cells and regulation by nitric oxide and oxidative stress , 2006, Cell and Tissue Research.

[50]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[51]  M. Palacín,et al.  Membrane Topology of System Xc- Light Subunit Reveals a Re-entrant Loop with Substrate-restricted Accessibility* , 2004, Journal of Biological Chemistry.

[52]  M. Palacín,et al.  Thiol Modification of Cysteine 327 in the Eighth Transmembrane Domain of the Light Subunit xCT of the Heteromeric Cystine/Glutamate Antiporter Suggests Close Proximity to the Substrate Binding Site/Permeation Pathway* , 2004, Journal of Biological Chemistry.

[53]  Guoyao Wu,et al.  Glutathione metabolism and its implications for health. , 2004, The Journal of nutrition.

[54]  M. Palacín,et al.  CATs and HATs: the SLC7 family of amino acid transporters , 2004, Pflügers Archiv.

[55]  Haruki Nakamura,et al.  Announcing the worldwide Protein Data Bank , 2003, Nature Structural Biology.

[56]  C. Thompson,et al.  Antigen-presenting cells control T cell proliferation by regulating amino acid availability , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[57]  A. Valencia,et al.  Heteromeric amino acid transporters: biochemistry, genetics, and physiology. , 2001, American journal of physiology. Renal physiology.

[58]  Amedeo Caflisch,et al.  Targeted Molecular Dynamics Simulations of Protein Unfolding , 2000 .

[59]  M. Smyth,et al.  x Ray crystallography , 2000, Methods of biochemical analysis.

[60]  H. Sies,et al.  Glutathione and its role in cellular functions. , 1999, Free radical biology & medicine.

[61]  T. Ishii,et al.  Cloning and Expression of a Plasma Membrane Cystine/Glutamate Exchange Transporter Composed of Two Distinct Proteins* , 1999, The Journal of Biological Chemistry.

[62]  Kumar,et al.  Textbook on Biotechnology , 1998 .

[63]  N. Bruchovsky,et al.  Increased cystine uptake capability associated with malignant progression of Nb2 lymphoma cells , 1997, Leukemia.

[64]  B. Wallace,et al.  HOLE: a program for the analysis of the pore dimensions of ion channel structural models. , 1996, Journal of molecular graphics.

[65]  S. Wodak,et al.  Deviations from standard atomic volumes as a quality measure for protein crystal structures. , 1996, Journal of molecular biology.

[66]  S. Brunak,et al.  Defining a similarity threshold for a functional protein sequence pattern: The signal peptide cleavage site , 1996, Proteins.

[67]  W. Dröge,et al.  Macrophages regulate intracellular glutathione levels of lymphocytes. Evidence for an immunoregulatory role of cysteine. , 1990, Cellular immunology.

[68]  Denis J. Evans,et al.  The Nose–Hoover thermostat , 1985 .

[69]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[70]  S. Bannai,et al.  Role of proton dissociation in the transport of cystine and glutamate in human diploid fibroblasts in culture. , 1981, The Journal of biological chemistry.

[71]  M. Arigoni,et al.  Immunotargeting of Antigen xCT Attenuates Stem-like Cell Behavior and Metastatic Progression in Breast Cancer. , 2016, Cancer research.

[72]  Zhe-Sheng Chen,et al.  The modulation of ABC transporter-mediated multidrug resistance in cancer: a review of the past decade. , 2015, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[73]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[74]  Tirso Pons,et al.  Homology modeling, model and software evaluation: three related resources , 1998, Bioinform..

[75]  N. Oppenheimer,et al.  Structure and mechanism , 1989 .