Improved Parameter Estimation in Kinetic Models: Selection and Tuning of Regularization Methods

Kinetic models are being increasingly used as a systematic framework to understand function in biological systems. Calibration of these nonlinear dynamic models remains challenging due to the nonconvexity and ill-conditioning of the associated inverse problems. Nonconvexity can be dealt with suitable global optimization. Here, we focus on simultaneously dealing with ill-conditioning by making use of proper regularization methods. Regularized calibrations ensure the best trade-offs between bias and variance, thus reducing over-fitting. We present a critical comparison of several methods, and guidelines for properly tuning them. The performance of this procedure and its advantages are illustrated with a well known benchmark problem considering several scenarios of data availability and measurement noise.

[1]  V. A. Morozov,et al.  Methods for Solving Incorrectly Posed Problems , 1984 .

[2]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[3]  U. Sauer,et al.  Advancing metabolic models with kinetic information. , 2014, Current opinion in biotechnology.

[4]  Hiroaki Kitano,et al.  Foundations of systems biology , 2001 .

[5]  Maria Rodriguez-Fernandez,et al.  A hybrid approach for efficient and robust parameter estimation in biochemical pathways. , 2006, Bio Systems.

[6]  Carol S. Woodward,et al.  Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers , 2020, ACM Trans. Math. Softw..

[7]  Carmen G. Moles,et al.  Parameter estimation in biochemical pathways: a comparison of global optimization methods. , 2003, Genome research.

[8]  O. Lepskii On a Problem of Adaptive Estimation in Gaussian White Noise , 1991 .

[9]  Reimo Palm Numerical comparison of regularization algorithms for solving ill-posed problems , 2010 .

[10]  Gonzalo Guillén-Gosálbez,et al.  Deterministic global optimization algorithm based on outer approximation for the parameter estimation of nonlinear dynamic biological systems , 2012, BMC Bioinformatics.

[11]  Marija Cvijovic,et al.  Kinetic models in industrial biotechnology - Improving cell factory performance. , 2014, Metabolic engineering.

[12]  H. Engl,et al.  Inverse problems in systems biology , 2009 .

[13]  Lennart Ljung,et al.  What Can Regularization Offer for Estimation of Dynamical Systems? , 2013, ALCOSP.

[14]  Barbara Kaltenbacher,et al.  Iterative Regularization Methods for Nonlinear Ill-Posed Problems , 2008, Radon Series on Computational and Applied Mathematics.

[15]  Claire S. Adjiman,et al.  Global optimization of dynamic systems , 2004, Comput. Chem. Eng..

[16]  Eric Walter,et al.  Identification of Parametric Models: from Experimental Data , 1997 .

[17]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[18]  John E. Dennis,et al.  An Adaptive Nonlinear Least-Squares Algorithm , 1977, TOMS.

[19]  Mark A. Lukas,et al.  Comparing parameter choice methods for regularization of ill-posed problems , 2011, Math. Comput. Simul..

[20]  Teresa Reginska,et al.  A Regularization Parameter in Discrete Ill-Posed Problems , 1996, SIAM J. Sci. Comput..

[21]  Maksat Ashyraliyev,et al.  Systems biology: parameter estimation for biochemical models , 2009, The FEBS journal.

[22]  Costas Kravaris,et al.  Advances and selected recent developments in state and parameter estimation , 2013, Comput. Chem. Eng..

[23]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[24]  Dianne P. O'Leary,et al.  The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems , 1993, SIAM J. Sci. Comput..

[25]  Julio R. Banga,et al.  Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems , 2006, BMC Bioinformatics.

[26]  F. Bauer,et al.  Some considerations concerning regularization and parameter choice algorithms , 2007 .

[27]  Carl D. Laird,et al.  Regularization of inverse problems to determine transcription factor profiles from fluorescent reporter systems , 2012 .

[28]  Lothar Reichel,et al.  Old and new parameter choice rules for discrete ill-posed problems , 2013, Numerical Algorithms.

[29]  P. Mendes,et al.  Systematic Construction of Kinetic Models from Genome-Scale Metabolic Networks , 2013, PloS one.

[30]  Hong Wang,et al.  Parameter estimation for metabolic networks with two stage Bregman regularization homotopy inversion algorithm. , 2014, Journal of theoretical biology.

[31]  Eva Balsa-Canto,et al.  Parameter estimation and optimal experimental design. , 2008, Essays in biochemistry.

[32]  W. Neumann Walter de Gruyter Berlin-New York , 1982 .