Model order reduction of parametrized nonlinear reaction-diffusion systems

Abstract We present a model order reduction technique for parametrized nonlinear reaction–diffusion systems. In our approach we combine the reduced basis method – a computational framework for rapid evaluation of functional outputs associated with the solution of parametrized partial differential equations – with the empirical interpolation method – a tool to construct “affine” coefficient-function approximations of nonlinear parameter dependent functions. We develop an efficient offline–online computational procedure for the evaluation of the reduced basis approximation: in the offline stage, we generate the reduced basis space; in the online stage, given a new parameter value, we calculate the reduced basis output. The operation count for the online stage depends only on the dimension of the reduced order model and the parametric complexity of the problem. The method is thus ideally suited for the many-query or real-time contexts. We present numerical results for a non-isothermal reaction–diffusion model to confirm and test our approach.

[1]  N. Nguyen,et al.  REDUCED BASIS APPROXIMATION AND A POSTERIORI ERROR ESTIMATION FOR THE PARAMETRIZED UNSTEADY BOUSSINESQ EQUATIONS , 2011 .

[2]  Martin A. Grepl,et al.  A Posteriori Error Bounds for Reduced Basis Approximations of Nonaffine and Nonlinear Parabolic Partial Differential Equations , 2010 .

[3]  G. Rosen The mathematical theory of diffusion and reaction in permeable catalysts , 1976 .

[4]  M. Damodaran,et al.  Proper Orthogonal Decomposition Extensions For Parametric Applications in Transonic Aerodynamics , 2003 .

[5]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[6]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[7]  A. Patera,et al.  Reduced-basis approximation of the viscous Burgers equation: rigorous a posteriori error bounds , 2003 .

[8]  Constantinos Theodoropoulos,et al.  Order Reduction of Nonlinear Dynamic Models for Distributed Reacting Systems , 1998 .

[9]  J. Banga,et al.  Reduced-Order Models for Nonlinear Distributed Process Systems and Their Application in Dynamic Optimization , 2004 .

[10]  J. Marsden,et al.  A subspace approach to balanced truncation for model reduction of nonlinear control systems , 2002 .

[11]  Gianluigi Rozza,et al.  Reduced basis approximation and a posteriori error estimation for the time-dependent viscous Burgers’ equation , 2009 .

[12]  Anthony T. Patera,et al.  A Posteriori Error Bounds for the Empirical Interpolation Method , 2010 .

[13]  P. Astrid,et al.  Fast reduced order modeling technique for large scale LTV systems , 2004, Proceedings of the 2004 American Control Conference.

[14]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[15]  M. Grepl Reduced-basis approximation a posteriori error estimation for parabolic partial differential equations , 2005 .

[16]  Clarence W. Rowley,et al.  Model Reduction for fluids, Using Balanced Proper Orthogonal Decomposition , 2005, Int. J. Bifurc. Chaos.

[17]  D. Rovas,et al.  A Posteriori Error Bounds for Reduced-Basis Approximation of Parametrized Noncoercive and Nonlinear Elliptic Partial Differential Equations , 2003 .

[18]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[19]  N. Britton Reaction-diffusion equations and their applications to biology. , 1989 .

[20]  A. Patera,et al.  Certified real‐time solution of the parametrized steady incompressible Navier–Stokes equations: rigorous reduced‐basis a posteriori error bounds , 2005 .

[21]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[22]  Muruhan Rathinam,et al.  A New Look at Proper Orthogonal Decomposition , 2003, SIAM J. Numer. Anal..

[23]  Jacob K. White,et al.  Geometrically parameterized interconnect performance models for interconnect synthesis , 2002, ISPD '02.

[24]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[25]  J. Peraire,et al.  An efficient reduced‐order modeling approach for non‐linear parametrized partial differential equations , 2008 .

[26]  Jerrold E. Marsden,et al.  Empirical model reduction of controlled nonlinear systems , 1999, IFAC Proceedings Volumes.

[27]  J. Peraire,et al.  Balanced Model Reduction via the Proper Orthogonal Decomposition , 2002 .

[28]  Martin A. Grepl,et al.  CERTIFIED REDUCED BASIS METHODS FOR NONAFFINE LINEAR TIME-VARYING AND NONLINEAR PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS , 2012 .

[29]  Jens Nørkær Sørensen,et al.  Evaluation of Proper Orthogonal Decomposition-Based Decomposition Techniques Applied to Parameter-Dependent Nonturbulent Flows , 1999, SIAM J. Sci. Comput..

[30]  A. Kapila,et al.  Asymptotic treatment of chemically reacting systems , 1983 .

[31]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[32]  N. Nguyen,et al.  A general multipurpose interpolation procedure: the magic points , 2008 .

[33]  Constantinos Theodoropoulos,et al.  Order reduction for nonlinear dynamic models of distributed reacting systems , 2000 .

[34]  Thomas F. Edgar,et al.  An improved method for nonlinear model reduction using balancing of empirical gramians , 2002 .

[35]  Panagiotis D. Christofides,et al.  Control of nonlinear distributed process systems : Recent developments and challenges , 2001 .

[36]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[37]  David Glasser,et al.  A simplified model of spontaneous combustion in coal stockpiles , 1986 .

[38]  Rutherford Aris,et al.  Modeling the spontaneous ignition of coal stockpiles , 1994 .

[39]  Dan Luss,et al.  Effect of natural convection on spontaneous combustion of coal stockpiles , 1988 .

[40]  L Sirovich,et al.  Low-dimensional procedure for the characterization of human faces. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[41]  D. Rovas,et al.  Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods , 2002 .

[42]  A. Patera,et al.  A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations , 2005 .

[43]  Wolfgang Marquardt,et al.  A grey-box modeling approach for the reduction of nonlinear systems , 2008 .

[44]  Dimitrios V. Rovas,et al.  Reduced-basis output bound methods for parabolic problems , 2006 .

[45]  Panagiotis D. Christofides,et al.  Nonlinear and Robust Control of Pde Systems , 2001 .

[46]  Oliver Lass,et al.  POD Galerkin Schemes for Nonlinear Elliptic-Parabolic Systems , 2013, SIAM J. Sci. Comput..

[47]  J. Duyzer,et al.  A model for the spontaneous heating of coal , 1985 .

[48]  S. Shvartsman,et al.  Nonlinear model reduction for control of distributed systems: A computer-assisted study , 1998 .

[49]  Joseph E. Flaherty,et al.  A moving finite element method with error estimation and refinement for one-dimensional time dependent partial differential equations , 1986 .

[50]  Wolfgang Marquardt,et al.  Nonlinear Model Reduction for Optimization Based Control of Transient Chemical Processes , 2002 .

[51]  B. Haasdonk,et al.  REDUCED BASIS METHOD FOR FINITE VOLUME APPROXIMATIONS OF PARAMETRIZED LINEAR EVOLUTION EQUATIONS , 2008 .

[52]  N. Nguyen,et al.  EFFICIENT REDUCED-BASIS TREATMENT OF NONAFFINE AND NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS , 2007 .

[53]  M. Gunzburger,et al.  Reduced-order modeling of time-dependent PDEs with multiple parameters in the boundary data , 2007 .