Sparsity by Worst-Case Quadratic Penalties

This paper proposes a new robust regression interpretation of sparse penalties such as the elastic net and the group-lasso. Beyond providing a new viewpoint on these penalization schemes, our approach results in a unified optimization strategy. Our evaluation experiments demonstrate that this strategy, implemented on the elastic net, is computationally extremely efficient for small to medium size problems. Our accompanying software solves problems at machine precision in the time required to get a rough estimate with competing state-of-the-art algorithms.

[1]  J. Mairal Sparse coding for machine learning, image processing and computer vision , 2010 .

[2]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[3]  Wenjiang J. Fu Penalized Regressions: The Bridge versus the Lasso , 1998 .

[4]  Laurent El Ghaoui,et al.  Robust Optimization , 2021, ICORES.

[5]  H. Bondell,et al.  Simultaneous Regression Shrinkage, Variable Selection, and Supervised Clustering of Predictors with OSCAR , 2008, Biometrics.

[6]  Trevor Hastie,et al.  Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent. , 2011, Journal of statistical software.

[7]  Conrad Sanderson,et al.  Armadillo: An Open Source C++ Linear Algebra Library for Fast Prototyping and Computationally Intensive Experiments , 2010 .

[8]  Stephen J. Wright,et al.  Simultaneous Variable Selection , 2005, Technometrics.

[9]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[10]  Julien Mairal,et al.  Optimization with Sparsity-Inducing Penalties , 2011, Found. Trends Mach. Learn..

[11]  R. Tibshirani,et al.  PATHWISE COORDINATE OPTIMIZATION , 2007, 0708.1485.

[12]  M. R. Osborne,et al.  On the LASSO and its Dual , 2000 .

[13]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.

[14]  G. Golub,et al.  Parameter Estimation in the Presence of Bounded Data Uncertainties , 1998, SIAM J. Matrix Anal. Appl..

[15]  Laurent El Ghaoui,et al.  Robust Solutions to Least-Squares Problems with Uncertain Data , 1997, SIAM J. Matrix Anal. Appl..

[16]  Léon Bottou,et al.  The Tradeoffs of Large Scale Learning , 2007, NIPS.

[17]  Peng Zhao,et al.  On Model Selection Consistency of Lasso , 2006, J. Mach. Learn. Res..

[18]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[19]  Gerhard Tutz,et al.  Feature selection guided by structural information , 2010, 1011.2315.

[20]  Shie Mannor,et al.  Robust Regression and Lasso , 2008, IEEE Transactions on Information Theory.

[21]  Dirk Eddelbuettel,et al.  Rcpp: Seamless R and C++ Integration , 2011 .