Ceramicines M–P from Chisocheton ceramicus: isolation and structure–activity relationship study
暂无分享,去创建一个
H. Morita | C. Wong | A. Hadi | M. Tsubuki | A. E. Nugroho | Hiromasa Yokoe | Toshio Kaneda | Akiyo Hashimoto
[1] H. Morita,et al. Anti-melanin deposition activity of ceramicines from Chisocheton ceramicus , 2016, Journal of Natural Medicines.
[2] Alfarius Eko Nugroho,et al. Ceramicines from Chisocheton ceramicus as lipid-droplets accumulation inhibitors. , 2013, Bioorganic & medicinal chemistry letters.
[3] H. Morita,et al. Ceramicines J–L, new limonoids from Chisocheton ceramicus , 2012, Journal of Natural Medicines.
[4] H. Morita,et al. Ceramicines J–L, new limonoids from Chisocheton ceramicus , 2011, Journal of Natural Medicines.
[5] K. Mohamad. Khalit Mohamad, Yusuke Hirasawa, Marc Litaudon, Khalijah Awnag, A. Hamid A. Hadi, Koichi Takeya, Wiwied Ekasari, Aty Widyawaruyanti, Noor Cholies Zaini, Hiroshi Morita. Ceramicines B-D, New antipalsmodial limonoids from Chisocheton ceramicus. Bioorganic and Medicinal Chemistry, 17, 2009, 727-730. , 2009 .
[6] Marc Litaudon,et al. Ceramicines B-D, new antiplasmodial limonoids from Chisocheton ceramicus. , 2009, Bioorganic & medicinal chemistry.
[7] H. Morita,et al. Ceramicine A and walsogyne A, novel limonoids from two species of Meliaceae , 2008 .
[8] V. T. Perchyonok. Use of (TMS)3CH as Novel Tin‐Free Radical Reducing Agent. , 2006 .
[9] F. Weigend. Accurate Coulomb-fitting basis sets for H to Rn. , 2006, Physical chemistry chemical physics : PCCP.
[10] J. Snaith,et al. Al-isopropoxydiisobutylalane: a study of the effect of solvent on the rate and stereoselectivity of cyclic ketone reduction. , 2004, The Journal of organic chemistry.
[11] Holger Patzelt,et al. RI-MP2: optimized auxiliary basis sets and demonstration of efficiency , 1998 .
[12] Florian Weigend,et al. Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials , 1997 .
[13] T. Halgren. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94 , 1996, J. Comput. Chem..
[14] Marco Häser,et al. Auxiliary basis sets to approximate Coulomb potentials , 1995 .
[15] Thomas A. Halgren,et al. The representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters , 1992 .
[16] Thomas A. Halgren,et al. Maximally diagonal force constants in dependent angle-bending coordinates. II. Implications for the design of empirical force fields , 1990 .
[17] G. Chang,et al. Macromodel—an integrated software system for modeling organic and bioorganic molecules using molecular mechanics , 1990 .
[18] A. Becke,et al. Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.
[19] Parr,et al. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.
[20] H. Morita,et al. Ceramicine B, a limonoid with anti-lipid droplets accumulation activity from Chisocheton ceramicus , 2013, Journal of Natural Medicines.
[21] Thomas A. Halgren,et al. Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular. interactions , 1996, J. Comput. Chem..
[22] R. Ahlrichs,et al. Efficient molecular numerical integration schemes , 1995 .