暂无分享,去创建一个
[1] Jiansong Deng,et al. Dimensions of biquadratic spline spaces over T-meshes , 2008, J. Comput. Appl. Math..
[2] Meng Wu,et al. Dimension of spline spaces with highest order smoothness over hierarchical T-meshes , 2011, Comput. Aided Geom. Des..
[3] Bert Jüttler,et al. Bases and dimensions of bivariate hierarchical tensor-product splines , 2013, J. Comput. Appl. Math..
[4] Tom Lyche,et al. Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..
[5] Jiansong Deng,et al. Dimensions of spline spaces over T-meshes , 2006 .
[6] G. Sangalli,et al. Linear independence of the T-spline blending functions associated with some particular T-meshes , 2010 .
[7] Tor Dokken,et al. Linear dependence of bivariate Minimal Support and Locally Refined B-splines over LR-meshes , 2018, Comput. Aided Geom. Des..
[8] Narasimalu Srikanth,et al. An adaptive isogeometric analysis meshfree collocation method for elasticity and frictional contact problems , 2019, International Journal for Numerical Methods in Engineering.
[9] David R. Forsey,et al. Hierarchical B-spline refinement , 1988, SIGGRAPH.
[10] Fang Deng,et al. Bicubic hierarchical B-splines: Dimensions, completeness, and bases , 2015, Comput. Aided Geom. Des..
[11] N. Nguyen‐Thanh,et al. Static and free-vibration analyses of cracks in thin-shell structures based on an isogeometric-meshfree coupling approach , 2018 .
[12] Fang Deng,et al. Dimensions of spline spaces over non-rectangular T-meshes , 2016, Adv. Comput. Math..
[13] B. Simeon,et al. A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .
[14] Hendrik Speleers,et al. THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..
[15] Tom Lyche,et al. T-spline simplification and local refinement , 2004, ACM Trans. Graph..
[16] Nelly Villamizar,et al. Dimension of polynomial splines of mixed smoothness on T-meshes , 2019, Comput. Aided Geom. Des..
[17] Michael S. Floater,et al. Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..
[18] Fang Deng,et al. Dimensions of biquadratic and bicubic spline spaces over hierarchical T-meshes , 2014, J. Comput. Appl. Math..
[19] Andrea Bressan,et al. Some properties of LR-splines , 2013, Comput. Aided Geom. Des..
[20] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..
[21] Larry L. Schumaker,et al. Approximation power of polynomial splines on T-meshes , 2012, Comput. Aided Geom. Des..
[22] Thomas J. R. Hughes,et al. On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..
[23] A. Meir,et al. Spline Functions and Approximation Theory , 1973 .
[24] Bernard Mourrain,et al. On the problem of instability in the dimension of a spline space over a T-mesh , 2012, Comput. Graph..
[25] Bert Jüttler,et al. TDHB-splines: The truncated decoupled basis of hierarchical tensor-product splines , 2014, Comput. Aided Geom. Des..
[26] Bernard Mourrain,et al. Polynomial spline spaces of non-uniform bi-degree on T-meshes: combinatorial bounds on the dimension , 2019, Adv. Comput. Math..
[27] Jiansong Deng,et al. On the dimension of spline spaces over T-meshes with smoothing cofactor-conformality method , 2012, Comput. Aided Geom. Des..
[28] Jiansong Deng,et al. Bases of Biquadratic Polynomial Spline Spaces Over Hierarchical T-Meshes , 2017 .
[29] N. Nguyen‐Thanh,et al. Extended isogeometric analysis based on PHT‐splines for crack propagation near inclusions , 2017 .
[30] Bernard Mourrain,et al. On the dimension of spline spaces on planar T-meshes , 2010, Math. Comput..
[31] Jiansong Deng,et al. Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..