Space Mapping of Spline Spaces over Hierarchical T-meshes

In this paper, we construct a bijective mapping between a biquadratic spline space over the hierarchical T-mesh and the piecewise constant space over the corresponding crossing-vertex-relationship graph (CVR graph). We propose a novel structure, by which we offer an effective and easy operative method for constructing the basis functions of the biquadratic spline space. The mapping we construct is an isomorphism. The basis functions of the biquadratic spline space hold the properties such as linearly independent, completeness and the property of partition of unity, which are the same with the properties for the basis functions of piecewise constant space over the CVR graph. To demonstrate that the new basis functions are efficient, we apply the basis functions to fit some open surfaces.

[1]  Jiansong Deng,et al.  Dimensions of biquadratic spline spaces over T-meshes , 2008, J. Comput. Appl. Math..

[2]  Meng Wu,et al.  Dimension of spline spaces with highest order smoothness over hierarchical T-meshes , 2011, Comput. Aided Geom. Des..

[3]  Bert Jüttler,et al.  Bases and dimensions of bivariate hierarchical tensor-product splines , 2013, J. Comput. Appl. Math..

[4]  Tom Lyche,et al.  Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..

[5]  Jiansong Deng,et al.  Dimensions of spline spaces over T-meshes , 2006 .

[6]  G. Sangalli,et al.  Linear independence of the T-spline blending functions associated with some particular T-meshes , 2010 .

[7]  Tor Dokken,et al.  Linear dependence of bivariate Minimal Support and Locally Refined B-splines over LR-meshes , 2018, Comput. Aided Geom. Des..

[8]  Narasimalu Srikanth,et al.  An adaptive isogeometric analysis meshfree collocation method for elasticity and frictional contact problems , 2019, International Journal for Numerical Methods in Engineering.

[9]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[10]  Fang Deng,et al.  Bicubic hierarchical B-splines: Dimensions, completeness, and bases , 2015, Comput. Aided Geom. Des..

[11]  N. Nguyen‐Thanh,et al.  Static and free-vibration analyses of cracks in thin-shell structures based on an isogeometric-meshfree coupling approach , 2018 .

[12]  Fang Deng,et al.  Dimensions of spline spaces over non-rectangular T-meshes , 2016, Adv. Comput. Math..

[13]  B. Simeon,et al.  A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .

[14]  Hendrik Speleers,et al.  THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..

[15]  Tom Lyche,et al.  T-spline simplification and local refinement , 2004, ACM Trans. Graph..

[16]  Nelly Villamizar,et al.  Dimension of polynomial splines of mixed smoothness on T-meshes , 2019, Comput. Aided Geom. Des..

[17]  Michael S. Floater,et al.  Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..

[18]  Fang Deng,et al.  Dimensions of biquadratic and bicubic spline spaces over hierarchical T-meshes , 2014, J. Comput. Appl. Math..

[19]  Andrea Bressan,et al.  Some properties of LR-splines , 2013, Comput. Aided Geom. Des..

[20]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[21]  Larry L. Schumaker,et al.  Approximation power of polynomial splines on T-meshes , 2012, Comput. Aided Geom. Des..

[22]  Thomas J. R. Hughes,et al.  On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..

[23]  A. Meir,et al.  Spline Functions and Approximation Theory , 1973 .

[24]  Bernard Mourrain,et al.  On the problem of instability in the dimension of a spline space over a T-mesh , 2012, Comput. Graph..

[25]  Bert Jüttler,et al.  TDHB-splines: The truncated decoupled basis of hierarchical tensor-product splines , 2014, Comput. Aided Geom. Des..

[26]  Bernard Mourrain,et al.  Polynomial spline spaces of non-uniform bi-degree on T-meshes: combinatorial bounds on the dimension , 2019, Adv. Comput. Math..

[27]  Jiansong Deng,et al.  On the dimension of spline spaces over T-meshes with smoothing cofactor-conformality method , 2012, Comput. Aided Geom. Des..

[28]  Jiansong Deng,et al.  Bases of Biquadratic Polynomial Spline Spaces Over Hierarchical T-Meshes , 2017 .

[29]  N. Nguyen‐Thanh,et al.  Extended isogeometric analysis based on PHT‐splines for crack propagation near inclusions , 2017 .

[30]  Bernard Mourrain,et al.  On the dimension of spline spaces on planar T-meshes , 2010, Math. Comput..

[31]  Jiansong Deng,et al.  Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..