Rate-Adaptive Distributed Source Coding using Low-Density Parity-Check Codes

Source coding with correlated decoder side infor- mation is considered. We impose the practical constraint that the encoder be unaware of even the statistical dependencies between source and side information. Two classes of rate-adaptive distributed source codes, both based on Low-Density Parity- Check (LDPC) codes, are developed and their design is studied. Specific realizations are shown to be better than alternatives of linear encoding and decoding complexity. The proposed rate- adaptive LDPC Accumulate (LDPCA) codes and Sum LDPC Accumulate (SLDPCA) codes (of length 6336 bits) perform within 10% and 5% of the Slepian-Wolf bound in the moderate and high rate regimes, respectively.

[1]  Sae-Young Chung,et al.  Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation , 2001, IEEE Trans. Inf. Theory.

[2]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[3]  Patrick Mitran,et al.  Coding for the Slepian-Wolf problem with turbo codes , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[4]  Bernd Girod,et al.  Compression with side information using turbo codes , 2002, Proceedings DCC 2002. Data Compression Conference.

[5]  Steven W. McLaughlin,et al.  Optimal puncturing of irregular low-density parity-check codes , 2003, IEEE International Conference on Communications, 2003. ICC '03..

[6]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[7]  Zixiang Xiong,et al.  Compression of binary sources with side information at the decoder using LDPC codes , 2002, IEEE Communications Letters.

[8]  Marc P. C. Fossorier,et al.  High-rate serially concatenated coding with extended Hamming codes , 2005, IEEE Communications Letters.

[9]  Dmitry Malioutov,et al.  Distributed source coding using serially-concatenated-accumulate codes , 2004, Information Theory Workshop.

[10]  William E. Ryan,et al.  Design of efficiently encodable moderate-length high-rate irregular LDPC codes , 2004, IEEE Transactions on Communications.

[11]  Faramarz Fekri,et al.  Results on punctured LDPC codes , 2004, Information Theory Workshop.

[12]  Giuseppe Caire,et al.  Incremental redundancy hybrid ARQ schemes based on low-density parity-check codes , 2004, IEEE Transactions on Communications.

[13]  X. Jin Factor graphs and the Sum-Product Algorithm , 2002 .

[14]  Aaron D. Wyner,et al.  Recent results in the Shannon theory , 1974, IEEE Trans. Inf. Theory.

[15]  R. A. McDonald,et al.  Noiseless Coding of Correlated Information Sources , 1973 .

[16]  Ying Zhao,et al.  Compression of correlated binary sources using turbo codes , 2001, IEEE Communications Letters.

[17]  Jing Li,et al.  Product accumulate codes: a class of codes with near-capacity performance and low decoding complexity , 2004, IEEE Transactions on Information Theory.

[18]  K. Ramchandran,et al.  Distributed source coding using syndromes (DISCUS): design and construction , 1999, Proceedings DCC'99 Data Compression Conference (Cat. No. PR00096).

[19]  Aaron D. Wyner,et al.  The rate-distortion function for source coding with side information at the decoder , 1976, IEEE Trans. Inf. Theory.

[20]  Aaron D. Wyner,et al.  The rate-distortion function for source coding with side information at the decoder , 1976, IEEE Trans. Inf. Theory.

[21]  Bernd Girod,et al.  Transform-domain Wyner-Ziv codec for video , 2004, IS&T/SPIE Electronic Imaging.

[22]  Martin E. Hellman Convolutional source encoding , 1975, IEEE Trans. Inf. Theory.

[23]  Joachim Hagenauer,et al.  LOSSLESS TURBO SOURCE CODING WITH DECREMENTAL REDUNDANCY , 2004 .

[24]  Laurence B. Milstein,et al.  On the performance of hybrid FEC/ARQ systems using rate compatible punctured turbo (RCPT) codes , 2000, IEEE Trans. Commun..