Profile Likelihood and Conditionally Parametric Models

In this paper, we outline a general approach to estimating the parametric component of a semiparametric model. For the case of a scalar parametric component, the method is based on the idea of first estimating a one-dimensional subproblem of the original problem that is least favorable in the sense of Stein. The likelihood function for the scalar parameter along this estimated subproblem may be viewed as a generalization of the profile likelihood for that parameter. The scalar parameter is then estimated by maximizing this "generalized profile likelihood." This method of estimation is applied to a particular class of semiparametric models, where it is shown that the resulting estimator is asymptotically efficient.

[1]  E. Nadaraya On Estimating Regression , 1964 .

[2]  A. Schick On Asymptotically Efficient Estimation in Semiparametric Models , 1986 .

[3]  R. R. Bahadur Some Limit Theorems in Statistics , 1987 .

[4]  C. Stein Efficient Nonparametric Testing and Estimation , 1956 .

[5]  P. Bickel On Adaptive Estimation , 1982 .

[6]  B. G. Lindsay,et al.  Nuisance parameters, mixture models, and the efficiency of partial likelihood estimators , 1980, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[7]  W. Wong Theory of Partial Likelihood , 1986 .

[8]  R. R. Bahadur On Fisher's Bound for Asymptotic Variances , 1964 .

[9]  P. J. Huber The behavior of maximum likelihood estimates under nonstandard conditions , 1967 .

[10]  W. J. Hall,et al.  Information and Asymptotic Efficiency in Parametric-Nonparametric Models , 1983 .

[11]  A. W. van der Vaart,et al.  Estimating a Real Parameter in a Class of Semiparametric Models , 1988 .

[12]  J. Staniswalis The Kernel Estimate of a Regression Function in Likelihood-Based Models , 1989 .

[13]  J. Hájek A characterization of limiting distributions of regular estimates , 1970 .

[14]  Michael B. Marcus,et al.  Central limit theorems for C(S)-valued random variables , 1975 .

[15]  W. Wong,et al.  On Maximum Likelihood Estimation in Infinite-Dimensional Parameter Spaces , 1991 .

[16]  J. Pfanzagl,et al.  CONTRIBUTIONS TO A GENERAL ASYMPTOTIC STATISTICAL THEORY , 1982 .