Phase transitions in a holographic multi-Weyl semimetal

[1]  V. Juričić,et al.  Shear viscosity as a probe of nodal topology , 2019, Physical Review B.

[2]  E. Muñoz,et al.  Dislocation defect as a bulk probe of monopole charge of multi-Weyl semimetals , 2019, Physical Review Research.

[3]  Piotr Sur'owka,et al.  Non-Abelian anomalies in multi-Weyl semimetals , 2019, Physical Review Research.

[4]  K. Sengupta,et al.  Transport across junctions of a Weyl and a multi-Weyl semimetal , 2018, Physical Review B.

[5]  S. Nandy,et al.  Transport phenomena of multi-Weyl semimetals in co-planar setups , 2018, 1812.08322.

[6]  Ya-Wen Sun,et al.  Topological invariants for holographic semimetals , 2018, Journal of High Energy Physics.

[7]  L. Lepori,et al.  Axial anomaly in multi-Weyl and triple-point semimetals , 2018, Journal of High Energy Physics.

[8]  P. Surówka,et al.  Magnetotransport in multi-Weyl semimetals: a kinetic theory approach , 2018, Journal of High Energy Physics.

[9]  Ya-Wen Sun,et al.  Topological nodal line semimetals in holography , 2018, Journal of High Energy Physics.

[10]  E. J. Mele,et al.  Weyl and Dirac semimetals in three-dimensional solids , 2017, 1705.01111.

[11]  S. Hartnoll,et al.  Holographic Quantum Matter , 2016, 1612.07324.

[12]  V. A. Miransky,et al.  Anomalous thermoelectric phenomena in lattice models of multi-Weyl semimetals , 2017, 1708.04248.

[13]  S. Shen,et al.  Topological responses from chiral anomaly in multi-Weyl semimetals , 2017, 1705.04576.

[14]  A. Burkov Weyl Metals , 2017, 1704.06660.

[15]  M. Zahid Hasan,et al.  Discovery of Weyl fermion semimetals and topological Fermi arc states , 2017, 1702.07310.

[16]  Sanghyun Park,et al.  Semiclassical Boltzmann transport theory for multi-Weyl semimetals , 2017, 1701.07578.

[17]  H. Min,et al.  Optical conductivity of multi-Weyl semimetals , 2016, 1609.08566.

[18]  P. Goswami,et al.  Interacting Weyl fermions: Phases, phase transitions, and global phase diagram , 2016, 1610.05762.

[19]  K. Landsteiner Notes on Anomaly Induced Transport , 2016, 1610.04413.

[20]  K. Landsteiner,et al.  Odd Viscosity in the Quantum Critical Region of a Holographic Weyl Semimetal. , 2016, Physical review letters.

[21]  K. Landsteiner,et al.  Quantum Phase Transition between a Topological and a Trivial Semimetal from Holography. , 2015, Physical review letters.

[22]  K. Landsteiner,et al.  The holographic Weyl semi-metal , 2015, 1505.04772.

[23]  孙雅文 新书推荐:Holographic Duality in Condensed Matter Physics , 2016 .

[24]  Su-Yang Xu,et al.  Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide , 2015, Nature Physics.

[25]  Su-Yang Xu,et al.  Experimental discovery of a topological Weyl semimetal state in TaP , 2015, Science Advances.

[26]  Su-Yang Xu,et al.  A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class , 2015, Nature Communications.

[27]  X. Dai,et al.  Observation of the Chiral-Anomaly-Induced Negative Magnetoresistance in 3D Weyl Semimetal TaAs , 2015, 1503.01304.

[28]  Xianhui Chen Experimental discovery of Weyl semimetal TaAs , 2015, Science China Materials.

[29]  Shuang Jia,et al.  Discovery of a Weyl fermion semimetal and topological Fermi arcs , 2015, Science.

[30]  I. S. Landea,et al.  Hydrodynamic modes of a holographic p−wave superfluid , 2014, 1409.6357.

[31]  Bohm-Jung Yang,et al.  Classification of stable three-dimensional Dirac semimetals with nontrivial topology , 2014, Nature Communications.

[32]  R. Cai,et al.  Entanglement entropy in a holographic p-wave superconductor model , 2013, 1310.6239.

[33]  J. Erdmenger,et al.  Magnetic field induced lattice ground states from holography , 2012, 1210.6669.

[34]  T. Wiseman,et al.  Holographic superfluids and the dynamics of symmetry breaking. , 2012, Physical review letters.

[35]  B. Spivak,et al.  Chiral Anomaly and Classical Negative Magnetoresistance of Weyl Metals , 2012, 1206.1627.

[36]  Yize Jin,et al.  Topological insulators , 2014, Topology in Condensed Matter.

[37]  I. S. Landea,et al.  Backreacting p-wave superconductors , 2012, 1210.6823.

[38]  A. Zyuzin,et al.  Topological response in Weyl semimetals and the chiral anomaly , 2012, 1206.1868.

[39]  Xi Dai,et al.  Multi-Weyl topological semimetals stabilized by point group symmetry. , 2011, Physical review letters.

[40]  Xi Dai,et al.  Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4. , 2011, Physical review letters.

[41]  Y. Oz,et al.  Relativistic hydrodynamics with general anomalous charges , 2010, 1011.5107.

[42]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[43]  Haijun Zhang,et al.  Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3 , 2009, Science.

[44]  R. Cava,et al.  Observation of a large-gap topological-insulator class with a single Dirac cone on the surface , 2009 .

[45]  A. Ludwig,et al.  Classification of Topological Insulators and Superconductors , 2009, 0905.2029.

[46]  K. Landsteiner,et al.  Hydrodynamics of Holographic Superconductors , 2009, 0903.2209.

[47]  S. Pufu,et al.  The second sound of SU(2) , 2009, 0902.0409.

[48]  Alexei Kitaev,et al.  Periodic table for topological insulators and superconductors , 2009, 0901.2686.

[49]  E. Winstanley Classical Yang–Mills Black Hole Hair in Anti-de Sitter Space , 2008, 0801.0527.

[50]  Xi Dai,et al.  Topological insulators in Bi 2 Se 3 , Bi 2 Te 3 and Sb 2 Te 3 with a single Dirac cone on the surface , 2009 .

[51]  S. Gubser,et al.  The gravity dual of a p-wave superconductor , 2008, 0805.2960.

[52]  D. Hsieh,et al.  A topological Dirac insulator in a quantum spin Hall phase , 2008, Nature.

[53]  S. Gubser Colorful horizons with charge in anti-de Sitter space. , 2008, Physical review letters.

[54]  Shinsei Ryu,et al.  Classification of topological insulators and superconductors in three spatial dimensions , 2008, 0803.2786.

[55]  L. Molenkamp,et al.  Quantum Spin Hall Insulator State in HgTe Quantum Wells , 2007, Science.

[56]  Liang Fu,et al.  Topological insulators in three dimensions. , 2006, Physical review letters.

[57]  J. E. Moore,et al.  Topological invariants of time-reversal-invariant band structures , 2006, cond-mat/0607314.

[58]  C. Kane,et al.  Time Reversal Polarization and a Z 2 Adiabatic Spin Pump , 2006, cond-mat/0606336.

[59]  Shou-Cheng Zhang,et al.  Quantum spin Hall effect. , 2005, Physical review letters.

[60]  C. Kane,et al.  Quantum spin Hall effect in graphene. , 2004, Physical review letters.

[61]  J. Maldacena,et al.  Large N Field Theories, String Theory and Gravity , 1999, hep-th/9905111.

[62]  E. Witten Anti-de Sitter space and holography , 1998, hep-th/9802150.

[63]  J. Maldacena The Large-N Limit of Superconformal Field Theories and Supergravity , 1997, hep-th/9711200.

[64]  D. Thouless,et al.  Quantized Hall conductance in a two-dimensional periodic potential , 1992 .

[65]  G. Dorda,et al.  New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance , 1980 .

[66]  J. Bell,et al.  A PCAC puzzle: π0→γγ in the σ-model , 1969 .

[67]  S. Adler Axial vector vertex in spinor electrodynamics , 1969 .