Regularity of solutions and the convergence of the galerkin method in the ginzburg-landau equation

In this paper an analytical explanation is given for two phenomena observed in numerical simulations of the Ginzburg-Landau equation on the domain [0, 1]D (D = 1, 2, 3) with periodic boundary conditions. First, it is shown that the solutions with initial data become analytic (in the spatial variable). This behavior accounts for the numerically observed exponential decay of the Fourier-modes. Then, based on the regularity result, it is shown that the (linear) Galerkin method has an exponential rate of convergence. This gives an explanation of simulations which show that the Ginzburg-Landau equation can be approximated by very low dimensional Galerkin projections.Furthermore, we discuss the influence of the parameters in the Ginzburg-Landau equation on the decay rate of the Fourier-modes and on the rate of convergence of the Galerkin approximations.

[1]  H. Moon,et al.  Transitions to chaos in the Ginzburg-Landau equation , 1983 .

[2]  Lee A. Segel,et al.  Non-linear wave-number interaction in near-critical two-dimensional flows , 1971, Journal of Fluid Mechanics.

[3]  Charles R. Doering,et al.  On the possibility of soft and hard turbulence in the complex Ginzburg-Landau equation , 1990 .

[4]  Edriss S. Titi,et al.  On the rate of convergence of the nonlinear Galerkin methods , 1993 .

[5]  Jean-Michel Ghidaglia,et al.  Dimension of the attractors associated to the Ginzburg-Landau partial differential equation , 1987 .

[6]  Pierre Collet,et al.  The time dependent amplitude equation for the Swift-Hohenberg problem , 1990 .

[7]  Finite-dimensional models of the Ginsburg-Landau equation , 1991 .

[8]  A. Mielke,et al.  Theory of steady Ginzburg-Landau equation, in hydrodynamic stability problems , 1989 .

[9]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[10]  K. Stewartson,et al.  A non-linear instability theory for a wave system in plane Poiseuille flow , 1971, Journal of Fluid Mechanics.

[11]  Exponential convergence of the Galerkin approximation for the Ginzburg-Landau equation , 1993 .

[12]  K. Promislow,et al.  Induced trajectories and approximate inertial manifolds for the Ginzburg-Landau partial differential equations , 1990 .

[13]  A. van Harten,et al.  On the validity of the Ginzburg-Landau equation , 1991 .

[14]  Arjen Doelman,et al.  Slow time-periodic solutions of the Ginzburg-Landau equation , 1989 .

[15]  Lawrence Sirovich,et al.  Instabilities of the Ginzburg-Landau equation: periodic solutions , 1986 .

[16]  Lawrence Sirovich,et al.  Low-dimensional dynamics for the complex Ginzburg-Landau equation , 1990 .

[17]  R. Temam,et al.  Gevrey class regularity for the solutions of the Navier-Stokes equations , 1989 .

[18]  Stig Larsson,et al.  Error estimates for spatially discrete approximations of semilinear parabolic equations with nonsmooth initial data , 1987 .

[19]  P. J. Blennerhassett,et al.  On the generation of waves by wind , 1980, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[20]  L. Keefe,et al.  Dynamics of Perturbed Wavetrain Solutions to the Ginzburg‐Landau Equation , 1985 .

[21]  Darryl D. Holm,et al.  Low-dimensional behaviour in the complex Ginzburg-Landau equation , 1988 .

[22]  R. Temam Navier-Stokes Equations , 1977 .

[23]  Lawrence Sirovich,et al.  Instabilities of the Ginzburg-Landau equation. II. Secondary bifurcation , 1986 .

[24]  Avner Friedman,et al.  Partial differential equations , 1969 .

[25]  John Whitehead,et al.  Finite bandwidth, finite amplitude convection , 1969, Journal of Fluid Mechanics.

[26]  F. John Partial differential equations , 1967 .

[27]  Peter Takáč,et al.  Invariant 2-tori in the time-dependent Ginzburg-Landau equation , 1992 .

[28]  A. Bernoff Slowly varying fully nonlinear wavetrains in the Ginzburg-Landau equation , 1988 .

[29]  L. M. Hocking,et al.  A nonlinear instability burst in plane parallel flow , 1972, Journal of Fluid Mechanics.