Hybrid evolutionary search for the minimum sum coloring problem of graphs

Given a graph G, a proper k-coloring of G is an assignment of k colors { 1 , ? , k } to the vertices of G such that two adjacent vertices receive two different colors. The minimum sum coloring problem (MSCP) is to find a proper k-coloring while minimizing the sum of the colors assigned to the vertices. This paper presents a stochastic hybrid evolutionary search algorithm for computing upper and lower bounds of this NP-hard problem. The proposed algorithm relies on a joint use of two dedicated crossover operators to generate offspring solutions and an iterated double-phase tabu search procedure to improve offspring solutions. A distance-and-quality updating rule is used to maintain a healthy diversity of the population. We show extensive experimental results to demonstrate the effectiveness of the proposed algorithm and provide the first landscape analysis of MSCP to shed light on the behavior of the algorithm.

[1]  Jin-Kao Hao,et al.  General swap-based multiple neighborhood tabu search for the maximum independent set problem , 2015, Eng. Appl. Artif. Intell..

[2]  Lee Altenberg,et al.  Fitness Distance Correlation Analysis: An Instructive Counterexample , 1997, ICGA.

[3]  Marco Chiarandini,et al.  A local search heuristic for chromatic sum , 2011 .

[4]  Jin-Kao Hao,et al.  A memetic algorithm for graph coloring , 2010, Eur. J. Oper. Res..

[5]  Fred W. Glover,et al.  Tabu Search for Nonlinear and Parametric Optimization (with Links to Genetic Algorithms) , 1994, Discret. Appl. Math..

[6]  Aziz Moukrim,et al.  Greedy Algorithms for the Minimum Sum Coloring Problem , 2009 .

[7]  Charles Fleurent,et al.  Genetic and hybrid algorithms for graph coloring , 1996, Ann. Oper. Res..

[8]  Pablo Moscato,et al.  Handbook of Memetic Algorithms , 2011, Studies in Computational Intelligence.

[9]  Leo G. Kroon,et al.  The Optimal Cost Chromatic Partition Problem for Trees and Interval Graphs , 1996, WG.

[10]  Terry Jones,et al.  Fitness Distance Correlation as a Measure of Problem Difficulty for Genetic Algorithms , 1995, ICGA.

[11]  Guy Kortsarz,et al.  Minimum Color Sum of Bipartite Graphs , 1998, J. Algorithms.

[12]  KENNETH J. SUPOWIT,et al.  Finding a Maximum Planar Subset of a Set of Nets in a Channel , 1987, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[13]  Jin-Kao Hao,et al.  A memetic algorithm for the Minimum Sum Coloring Problem , 2013, Comput. Oper. Res..

[14]  Javier Marenco,et al.  Minimum sum set coloring of trees and line graphs of trees , 2011, Discret. Appl. Math..

[15]  F. Glover,et al.  Fundamentals of Scatter Search and Path Relinking , 2000 .

[16]  Alain Hertz,et al.  Using tabu search techniques for graph coloring , 1987, Computing.

[17]  Jin-Kao Hao,et al.  An evolutionary approach with diversity guarantee and well-informed grouping recombination for graph coloring , 2010, Comput. Oper. Res..

[18]  Ewa Kubicka,et al.  An introduction to chromatic sums , 1989, CSC '89.

[19]  Pawel B. Myszkowski,et al.  Solving Scheduling Problems by Evolutionary Algorithms for Graph Coloring Problem , 2008, Metaheuristics for Scheduling in Industrial and Manufacturing Applications.

[20]  Mohammad R. Salavatipour,et al.  On Sum Coloring of Graphs , 2003, Discret. Appl. Math..

[21]  Jin-Kao Hao,et al.  An effective heuristic algorithm for sum coloring of graphs , 2012, Comput. Oper. Res..

[22]  Zbigniew Kokosinski,et al.  On Sum Coloring of Graphs with Parallel Genetic Algorithms , 2007, ICANNGA.

[23]  Vahid Lotfi,et al.  A graph coloring algorithm for large scale scheduling problems , 1986, Comput. Oper. Res..

[24]  Fred W. Glover,et al.  A Template for Scatter Search and Path Relinking , 1997, Artificial Evolution.

[25]  Manuel Laguna,et al.  Tabu Search , 1997 .

[26]  Dionysios Kountanis,et al.  Approximation Algorithms for the Chromatic Sum , 1989, Great Lakes Computer Science Conference.

[27]  Jin-Kao Hao,et al.  Hybrid Evolutionary Algorithms for Graph Coloring , 1999, J. Comb. Optim..

[28]  Hend Bouziri,et al.  A tabu search approach for the sum coloring problem , 2010, Electron. Notes Discret. Math..

[29]  Jin-Kao Hao,et al.  Improved Lower Bounds for Sum Coloring via Clique Decomposition , 2013, ArXiv.

[30]  Y. Li,et al.  Lower Bounds for the Minimal Sum Coloring Problem , 2010, Electron. Notes Discret. Math..

[31]  Kenneth Sörensen,et al.  MA mid PM: memetic algorithms with population management , 2006, Comput. Oper. Res..

[32]  K. Sörensen,et al.  Memetic algorithms with population management , 2006 .

[33]  Pablo Moscato,et al.  A Gentle Introduction to Memetic Algorithms , 2003, Handbook of Metaheuristics.

[34]  Aziz Moukrim,et al.  Upper and Lower Bounds for the Minimum Sum Coloring Problem ✩ , 2013 .

[35]  Klaus Jansen,et al.  Approximation Results for the Optimum Cost Chromatic Partition Problem , 1997, J. Algorithms.

[36]  Jin-Kao Hao,et al.  A Study of Breakout Local Search for the Minimum Sum Coloring Problem , 2012, SEAL.

[37]  Daniel Brélaz,et al.  New methods to color the vertices of a graph , 1979, CACM.

[38]  Jin-Kao Hao,et al.  Memetic Algorithms in Discrete Optimization , 2012, Handbook of Memetic Algorithms.