Emerging role of F-box proteins in the regulation of epithelial-mesenchymal transition and stem cells in human cancers

[1]  S. Batra,et al.  Glycosylation of Cancer Stem Cells: Function in Stemness, Tumorigenesis, and Metastasis , 2018, Neoplasia.

[2]  Da-Qiang Li,et al.  FBXO22 Possesses Both Protumorigenic and Antimetastatic Roles in Breast Cancer Progression. , 2018, Cancer research.

[3]  Zhiwei Zhao,et al.  MiR-223 promotes the doxorubicin resistance of colorectal cancer cells via regulating epithelial–mesenchymal transition by targeting FBXW7 , 2018, Acta biochimica et biophysica Sinica.

[4]  Wenyi Wei,et al.  Physiological functions of FBW7 in cancer and metabolism. , 2018, Cellular signalling.

[5]  X. Qu,et al.  Identification of aberrantly expressed F-box proteins in squamous-cell lung carcinoma , 2018, Journal of Cancer Research and Clinical Oncology.

[6]  J. Xiong,et al.  FBW7 loss promotes epithelial-to-mesenchymal transition in non-small cell lung cancer through the stabilization of Snail protein. , 2018, Cancer letters.

[7]  Xiaoping Han,et al.  S-phase kinase-associated protein 2 is involved in epithelial-mesenchymal transition in methotrexate-resistant osteosarcoma cells , 2018, International journal of oncology.

[8]  G. Wang,et al.  F-box protein 11 promotes the growth and metastasis of gastric cancer via PI3K/AKT pathway-mediated EMT. , 2018, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[9]  Xu Sun,et al.  FBXO2, a novel marker for metastasis in human gastric cancer. , 2018, Biochemical and biophysical research communications.

[10]  Wei He,et al.  Fbxw7 regulates renal cell carcinoma migration and invasion via suppression of the epithelial-mesenchymal transition , 2018, Oncology letters.

[11]  Yutaka Suzuki,et al.  Combined Mutation of Apc, Kras, and Tgfbr2 Effectively Drives Metastasis of Intestinal Cancer. , 2018, Cancer research.

[12]  S. Strand,et al.  FBXO32 promotes microenvironment underlying epithelial-mesenchymal transition via CtBP1 during tumour metastasis and brain development , 2017, Nature Communications.

[13]  Shou-Ching Tang,et al.  miR-367 stimulates Wnt cascade activation through degrading FBXW7 in NSCLC stem cells , 2017, Cell cycle.

[14]  Fenghuan Yang,et al.  FBXO31 Suppresses Gastric Cancer EMT by Targeting Snail1 for Proteasomal Degradation , 2017, Molecular Cancer Research.

[15]  Yu Fu,et al.  Upregulation of FBXW7 Suppresses Renal Cancer Metastasis and Epithelial Mesenchymal Transition , 2017, Disease markers.

[16]  Yiming Yang,et al.  N-myc downstream regulated gene 1(NDRG1) promotes the stem-like properties of lung cancer cells through stabilized c-Myc. , 2017, Cancer letters.

[17]  S. Qin,et al.  miR-367 promotes tumor growth by inhibiting FBXW7 in NSCLC. , 2017, Oncology reports.

[18]  Meng Xu,et al.  Long non-coding RNA CASC2 suppresses epithelial-mesenchymal transition of hepatocellular carcinoma cells through CASC2/miR-367/FBXW7 axis , 2017, Molecular Cancer.

[19]  Yidong Chen,et al.  Ubiquitin carboxyl-terminal esterase L1 (UCHL1) is associated with stem-like cancer cell functions in pediatric high-grade glioma , 2017, PloS one.

[20]  P. Dong,et al.  iASPP induces EMT and cisplatin resistance in human cervical cancer through miR-20a-FBXL5/BTG3 signaling , 2017, Journal of experimental & clinical cancer research : CR.

[21]  Rehan Akbani,et al.  Integrated Molecular Characterization of Uterine Carcinosarcoma. , 2017, Cancer cell.

[22]  Chien-Feng Li,et al.  Skp2 deficiency restricts the progression and stem cell features of castration-resistant prostate cancer by destabilizing Twist , 2017, Oncogene.

[23]  J. Xu,et al.  miR-367 promotes the proliferation and invasion of non-small cell lung cancer via targeting FBXW7. , 2017, Oncology reports.

[24]  R. McLendon,et al.  Deubiquitinase USP13 maintains glioblastoma stem cells by antagonizing FBXL14-mediated Myc ubiquitination , 2017, The Journal of experimental medicine.

[25]  Eiji Kikuchi,et al.  Acquired platinum resistance involves epithelial to mesenchymal transition through ubiquitin ligase FBXO32 dysregulation. , 2016, JCI insight.

[26]  A. Dragoi,et al.  FLASH protects ZEB1 from degradation and supports cancer cells' epithelial-to-mesenchymal transition , 2016, Oncogenesis.

[27]  Renyuan Li,et al.  miR-223/FBW7 axis regulates doxorubicin sensitivity through epithelial mesenchymal transition in non-small cell lung cancer. , 2016, American journal of translational research.

[28]  J. Arbiser,et al.  Imipramine blue halts head and neck cancer invasion through promoting F-box and leucine-rich repeat protein 14-mediated Twist1 degradation , 2016, Oncogene.

[29]  G. Hortobagyi,et al.  AKT1 Inhibits Epithelial-to-Mesenchymal Transition in Breast Cancer through Phosphorylation-Dependent Twist1 Degradation. , 2016, Cancer research.

[30]  H. Aburatani,et al.  SCFFbxo22-KDM4A targets methylated p53 for degradation and regulates senescence , 2016, Nature Communications.

[31]  Zhi-Qiang Ling,et al.  Fbxw7 Tumor Suppressor: A Vital Regulator Contributes to Human Tumorigenesis , 2016, Medicine.

[32]  A. G. de Herreros,et al.  F-box proteins: Keeping the epithelial-to-mesenchymal transition (EMT) in check. , 2016, Seminars in cancer biology.

[33]  Ziwei Wang,et al.  Fbxw7 regulates tumor apoptosis, growth arrest and the epithelial-to-mesenchymal transition in part through the RhoA signaling pathway in gastric cancer. , 2016, Cancer letters.

[34]  Z. Zeng,et al.  EBV-miR-BART10-3p facilitates epithelial-mesenchymal transition and promotes metastasis of nasopharyngeal carcinoma by targeting BTRC , 2015, Oncotarget.

[35]  Antonio García de Herreros,et al.  Snail1-driven plasticity of epithelial and mesenchymal cells sustains cancer malignancy. , 2015, Biochimica et biophysica acta.

[36]  P. Dong,et al.  Reactivating p53 functions by suppressing its novel inhibitor iASPP: a potential therapeutic opportunity in p53 wild-type tumors , 2015, Oncotarget.

[37]  Xin Hu,et al.  FBXO11 promotes ubiquitination of the Snail family of transcription factors in cancer progression and epidermal development. , 2015, Cancer letters.

[38]  X. Tian,et al.  F-box protein FBXO22 mediates polyubiquitination and degradation of KLF4 to promote hepatocellular carcinoma progression , 2015, Oncotarget.

[39]  A. Iwama,et al.  Fbxl10 overexpression in murine hematopoietic stem cells induces leukemia involving metabolic activation and upregulation of Nsg2. , 2015, Blood.

[40]  Wei-dong Wu,et al.  FBXL5 Inhibits Metastasis of Gastric Cancer Through Suppressing Snail1 , 2015, Cellular Physiology and Biochemistry.

[41]  J. Ruppert,et al.  SOX9 inhibits &bgr;-TrCP-mediated protein degradation to promote nuclear GLI1 expression and cancer stem cell properties , 2015, Journal of Cell Science.

[42]  Xi Chen,et al.  microRNA-200b and microRNA-200c promote colorectal cancer cell proliferation via targeting the reversion-inducing cysteine-rich protein with Kazal motifs , 2015, RNA biology.

[43]  Xiaofei Lu,et al.  FBXW7 suppresses epithelial-mesenchymal transition, stemness and metastatic potential of cholangiocarcinoma cells , 2015, Oncotarget.

[44]  Qin Chen,et al.  Atypical ubiquitin E3 ligase complex Skp1-Pam-Fbxo45 controls the core epithelial-to-mesenchymal transition-inducing transcription factors , 2014, Oncotarget.

[45]  B. Clurman,et al.  Tumor suppression by the Fbw7 ubiquitin ligase: mechanisms and opportunities. , 2014, Cancer cell.

[46]  D. Medici,et al.  Signaling mechanisms of the epithelial-mesenchymal transition , 2014, Science Signaling.

[47]  Yibin Kang,et al.  PKD1 phosphorylation-dependent degradation of SNAIL by SCF-FBXO11 regulates epithelial-mesenchymal transition and metastasis. , 2014, Cancer cell.

[48]  Hua Tang,et al.  MicroRNAs regulate the epithelial to mesenchymal transition (EMT) in cancer progression. , 2014, MicroRNA.

[49]  H. Agaisse,et al.  Novel strategies to enforce an epithelial phenotype in mesenchymal cells. , 2014, Cancer research.

[50]  Ying Huang,et al.  E3-ligase Skp2 predicts poor prognosis and maintains cancer stem cell pool in nasopharyngeal carcinoma , 2014, Oncotarget.

[51]  K. Khanna,et al.  SCF-FBXO31 E3 Ligase Targets DNA Replication Factor Cdt1 for Proteolysis in the G2 Phase of Cell Cycle to Prevent Re-replication* , 2014, The Journal of Biological Chemistry.

[52]  F. Gao,et al.  FBW7 increases chemosensitivity in hepatocellular carcinoma cells through suppression of epithelial-mesenchymal transition. , 2014, Hepatobiliary & pancreatic diseases international : HBPD INT.

[53]  Y. Ye,et al.  Cleaning up in the endoplasmic reticulum: ubiquitin in charge , 2014, Nature Structural &Molecular Biology.

[54]  Zhiwei Wang,et al.  Roles of F-box proteins in cancer , 2014, Nature Reviews Cancer.

[55]  C. Chen,et al.  Acquisition of epithelial–mesenchymal transition is associated with Skp2 expression in paclitaxel-resistant breast cancer cells , 2014, British Journal of Cancer.

[56]  Juan Wu,et al.  E3-ligase Skp2 regulates β-catenin expression and maintains hematopoietic stem cell homing. , 2014, Biochemical and biophysical research communications.

[57]  Samy Lamouille,et al.  Molecular mechanisms of epithelial–mesenchymal transition , 2014, Nature Reviews Molecular Cell Biology.

[58]  S. Bicciato,et al.  Prolyl-isomerase Pin1 controls normal and cancer stem cells of the breast , 2013, EMBO molecular medicine.

[59]  V. Díaz,et al.  Nuclear ubiquitination by FBXL5 modulates Snail1 DNA binding and stability , 2013, Nucleic acids research.

[60]  Zhihui Feng,et al.  A signal transduction pathway from TGF-β1 to SKP2 via Akt1 and c-Myc and its correlation with progression in human melanoma. , 2014, The Journal of investigative dermatology.

[61]  D. Oscier,et al.  Whole Exome Sequencing Identifies Novel Recurrently Mutated Genes in Patients with Splenic Marginal Zone Lymphoma , 2013, PloS one.

[62]  M. Hung,et al.  Pharmacological Inactivation of Skp2 SCF Ubiquitin Ligase Restricts Cancer Stem Cell Traits and Cancer Progression , 2013, Cell.

[63]  A. Ferrando,et al.  The Ubiquitin Ligase FBXW7 Modulates Leukemia-Initiating Cell Activity by Regulating MYC Stability , 2013, Cell.

[64]  A. Ciechanover Intracellular protein degradation: from a vague idea through the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. , 2013, Bioorganic & medicinal chemistry.

[65]  Michele Pagano,et al.  Mechanisms and function of substrate recruitment by F-box proteins , 2013, Nature Reviews Molecular Cell Biology.

[66]  J. Mao,et al.  Rapamycin inhibits FBXW7 loss-induced epithelial-mesenchymal transition and cancer stem cell-like characteristics in colorectal cancer cells. , 2013, Biochemical and biophysical research communications.

[67]  Samy Lamouille,et al.  Regulation of epithelial-mesenchymal and mesenchymal-epithelial transitions by microRNAs. , 2013, Current opinion in cell biology.

[68]  G. Berx,et al.  Regulatory networks defining EMT during cancer initiation and progression , 2013, Nature Reviews Cancer.

[69]  Samy Lamouille,et al.  TGF-&bgr; signaling and epithelial–mesenchymal transition in cancer progression , 2013, Current opinion in oncology.

[70]  W. Han,et al.  FBW7 upregulation enhances cisplatin cytotoxicity in non- small cell lung cancer cells. , 2013, Asian Pacific journal of cancer prevention : APJCP.

[71]  Zhiwei Wang,et al.  Degradation of the transcription factor Twist, an oncoprotein that promotes cancer metastasis. , 2013, Discovery medicine.

[72]  Jeremy J. W. Chen,et al.  A Novel Function of YWHAZ/β-Catenin Axis in Promoting Epithelial–Mesenchymal Transition and Lung Cancer Metastasis , 2012, Molecular Cancer Research.

[73]  Alexander Varshavsky,et al.  The ubiquitin system, an immense realm. , 2012, Annual review of biochemistry.

[74]  S. Emr,et al.  Ubiquitin and membrane protein turnover: from cradle to grave. , 2012, Annual review of biochemistry.

[75]  M. Kitagawa,et al.  The Amelioration of Renal Damage in Skp2-Deficient Mice Canceled by p27 Kip1 Deficiency in Skp2−/− p27−/− Mice , 2012, PloS one.

[76]  A. Rust,et al.  Sleeping Beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma , 2012, Proceedings of the National Academy of Sciences.

[77]  Michele Pagano,et al.  FBXO11 targets BCL6 for degradation and is inactivated in diffuse large B-cell lymphomas , 2012, Nature.

[78]  Yabin Cheng,et al.  Role of the ubiquitin ligase Fbw7 in cancer progression , 2011, Cancer and Metastasis Reviews.

[79]  Quentin Liu,et al.  The role of Skp2 in hematopoietic stem cell quiescence, pool size, and self-renewal. , 2011, Blood.

[80]  A. Weissman,et al.  RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis , 2011, Nature Reviews Cancer.

[81]  J. Harper,et al.  SCFFBXO22 Regulates Histone H3 Lysine 9 and 36 Methylation Levels by Targeting Histone Demethylase KDM4A for Ubiquitin-Mediated Proteasomal Degradation , 2011, Molecular and Cellular Biology.

[82]  C. LaBonne,et al.  The F-box protein Ppa is a common regulator of core EMT factors Twist, Snail, Slug, and Sip1 , 2011, The Journal of cell biology.

[83]  D. Glass,et al.  Endogenous Muscle Atrophy F-Box Mediates Pressure Overload–Induced Cardiac Hypertrophy Through Regulation of Nuclear Factor-&kgr;B , 2011, Circulation research.

[84]  K. Nakayama,et al.  The SKP2 E3 ligase regulates basal homeostasis and stress-induced regeneration of HSCs. , 2011, Blood.

[85]  Hans Clevers,et al.  The cancer stem cell: premises, promises and challenges , 2011, Nature Medicine.

[86]  James Lowe,et al.  Ubiquitin-like protein conjugation and the ubiquitin–proteasome system as drug targets , 2010, Nature Reviews Drug Discovery.

[87]  Ivan Dikic,et al.  Ubiquitin ligase complexes: from substrate selectivity to conjugational specificity , 2010, Biological chemistry.

[88]  T. O'Brien,et al.  Therapeutic strategies within the ubiquitin proteasome system , 2010, Cell Death and Differentiation.

[89]  H. Okano,et al.  Fbxo45, a Novel Ubiquitin Ligase, Regulates Synaptic Activity* , 2009, The Journal of Biological Chemistry.

[90]  A. G. de Herreros,et al.  The Hypoxia-controlled FBXL14 Ubiquitin Ligase Targets SNAIL1 for Proteasome Degradation* , 2009, The Journal of Biological Chemistry.

[91]  R. Huang,et al.  Epithelial-Mesenchymal Transitions in Development and Disease , 2009, Cell.

[92]  William A. Flavahan,et al.  Squelching glioblastoma stem cells by targeting REST for proteasomal degradation , 2009, Trends in Neurosciences.

[93]  M. Pagano,et al.  The F-box protein FBXO45 promotes the proteasome-dependent degradation of p73 , 2009, Oncogene.

[94]  M. Kitagawa,et al.  Ubiquitin‐mediated control of oncogene and tumor suppressor gene products , 2009, Cancer science.

[95]  M. Pagano,et al.  SnapShot: F Box Proteins II , 2009, Cell.

[96]  R. Deshaies,et al.  RING domain E3 ubiquitin ligases. , 2009, Annual review of biochemistry.

[97]  Suimin Qiu,et al.  Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion. , 2009, Cancer cell.

[98]  H. Okano,et al.  Fbxo45 Forms a Novel Ubiquitin Ligase Complex and Is Required for Neuronal Development , 2009, Molecular and Cellular Biology.

[99]  Michael R. Green,et al.  F-Box Protein FBXO31 Mediates Cyclin D1 Degradation to Induce G1 Arrest Following DNA Damage , 2009, Nature.

[100]  D. Gu,et al.  Atrogin-1/MAFbx Enhances Simulated Ischemia/Reperfusion-induced Apoptosis in Cardiomyocytes through Degradation of MAPK Phosphatase-1 and Sustained JNK Activation* , 2009, Journal of Biological Chemistry.

[101]  A. Csibi,et al.  MAFbx/Atrogin-1 Controls the Activity of the Initiation Factor eIF3-f in Skeletal Muscle Atrophy by Targeting Multiple C-terminal Lysines* , 2009, Journal of Biological Chemistry.

[102]  M. Pagano,et al.  SnapShot: F Box Proteins I , 2009, Cell.

[103]  Gordon B. Mills,et al.  Derailed endocytosis: an emerging feature of cancer , 2008, Nature Reviews Cancer.

[104]  Tommer Ravid,et al.  Diversity of degradation signals in the ubiquitin–proteasome system , 2008, Nature Reviews Molecular Cell Biology.

[105]  M. Pagano,et al.  Deregulated proteolysis by the F-box proteins SKP2 and β-TrCP: tipping the scales of cancer , 2008, Nature Reviews Cancer.

[106]  K. Nakayama,et al.  Targeting the p27 E3 ligase SCF(Skp2) results in p27- and Skp2-mediated cell-cycle arrest and activation of autophagy. , 2008, Blood.

[107]  A. Iwama,et al.  Fbxw7 acts as a critical fail-safe against premature loss of hematopoietic stem cells and development of T-ALL. , 2008, Genes & development.

[108]  B. Clurman,et al.  FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation , 2008, Nature Reviews Cancer.

[109]  Akio Matsuda,et al.  Genome-Wide and Functional Annotation of Human E3 Ubiquitin Ligases Identifies MULAN, a Mitochondrial E3 that Regulates the Organelle's Dynamics and Signaling , 2008, PloS one.

[110]  A. Sparks,et al.  The Genomic Landscapes of Human Breast and Colorectal Cancers , 2007, Science.

[111]  Richard W. Daniels,et al.  DFsn collaborates with Highwire to down-regulate the Wallenda/DLK kinase and restrain synaptic terminal growth , 2007, Neural Development.

[112]  Rob Pieters,et al.  FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to γ-secretase inhibitors , 2007, The Journal of experimental medicine.

[113]  Xia Ding,et al.  FBXL5 interacts with p150Glued and regulates its ubiquitination. , 2007, Biochemical and biophysical research communications.

[114]  Héctor Peinado,et al.  Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? , 2007, Nature Reviews Cancer.

[115]  Qiang Yu,et al.  Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. , 2007, Genes & development.

[116]  W. Park,et al.  Somatic mutations of the β‐TrCP gene in gastric cancer , 2007 .

[117]  W. Park,et al.  Somatic mutations of the beta-TrCP gene in gastric cancer. , 2007, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[118]  M. Katoh,et al.  Cross-talk of WNT and FGF signaling pathways at GSK3ß to regulate ß-catenin and SNAIL signaling cascades , 2006, Cancer biology & therapy.

[119]  N. Lehman,et al.  Overexpression of the Anaphase Promoting Complex/Cyclosome Inhibitor Emi1 Leads to Tetraploidy and Genomic Instability of p53-Deficient Cells , 2006, Cell cycle.

[120]  J. Wade Harper,et al.  Drug discovery in the ubiquitin–proteasome system , 2006, Nature Reviews Drug Discovery.

[121]  K. Nakayama,et al.  Ubiquitin ligases: cell-cycle control and cancer , 2006, Nature Reviews Cancer.

[122]  J. Thiery,et al.  Complex networks orchestrate epithelial–mesenchymal transitions , 2006, Nature Reviews Molecular Cell Biology.

[123]  Anne-Marie Cleton-Jansen,et al.  FBXO31 is the chromosome 16q24.3 senescence gene, a candidate breast tumor suppressor, and a component of an SCF complex. , 2005, Cancer research.

[124]  Alfonso Bellacosa,et al.  Epithelial–mesenchymal transition in development and cancer: role of phosphatidylinositol 3′ kinase/AKT pathways , 2005, Oncogene.

[125]  Kenichi Yoshida Characterization of estrogen-induced F-box protein FBXO45. , 2005, Oncology reports.

[126]  M. Hung,et al.  Wnt, Hedgehog, and Snail: Sister Pathways That Control by GSK-3beta and beta-Trcp in the Regulation of Metastasis , 2005, Cell cycle.

[127]  V. Sirri,et al.  Degradation of MyoD Mediated by the SCF (MAFbx) Ubiquitin Ligase* , 2005, Journal of Biological Chemistry.

[128]  Raymond J. Deshaies,et al.  Function and regulation of cullin–RING ubiquitin ligases , 2005, Nature Reviews Molecular Cell Biology.

[129]  Da-Zhi Wang,et al.  Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex. , 2004, The Journal of clinical investigation.

[130]  M. Hung,et al.  Dual regulation of Snail by GSK-3β-mediated phosphorylation in control of epithelial–mesenchymal transition , 2004, Nature Cell Biology.

[131]  F. Portillo,et al.  Transcriptional regulation of cadherins during development and carcinogenesis. , 2004, The International journal of developmental biology.

[132]  M. Zhen,et al.  An SCF-like ubiquitin ligase complex that controls presynaptic differentiation , 2004, Nature.

[133]  S. Ramaswamy,et al.  Twist, a Master Regulator of Morphogenesis, Plays an Essential Role in Tumor Metastasis , 2004, Cell.

[134]  S. Fuchs,et al.  The many faces of β-TrCP E3 ubiquitin ligases: reflections in the magic mirror of cancer , 2004, Oncogene.

[135]  Keiji Tanaka,et al.  Fbs2 Is a New Member of the E3 Ubiquitin Ligase Family That Recognizes Sugar Chains* , 2003, Journal of Biological Chemistry.

[136]  M. Pagano,et al.  Role of the SCFSkp2 Ubiquitin Ligase in the Degradation of p21Cip1 in S Phase* , 2003, Journal of Biological Chemistry.

[137]  Kenneth Pienta,et al.  APC/CTNNB1 (β‐catenin) pathway alterations in human prostate cancers , 2002 .

[138]  K. Pienta,et al.  APC/CTNNB1 (beta-catenin) pathway alterations in human prostate cancers. , 2002, Genes, chromosomes & cancer.

[139]  A. Goldberg,et al.  Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[140]  I. Weissman,et al.  Stem cells, cancer, and cancer stem cells , 2001, Nature.

[141]  D J Glass,et al.  Identification of Ubiquitin Ligases Required for Skeletal Muscle Atrophy , 2001, Science.

[142]  M. Katoh,et al.  Expression profiles of betaTRCP1 and betaTRCP2, and mutation analysis of betaTRCP2 in gastric cancer. , 2001, International journal of oncology.

[143]  K. Nakayama,et al.  Regulation of the cell cycle at the G1-S transition by proteolysis of cyclin E and p27Kip1. , 2001, Biochemical and biophysical research communications.

[144]  Alexander Varshavsky,et al.  The ubiquitin system. , 1998, Annual review of biochemistry.

[145]  Michele Pagano,et al.  SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27 , 1999, Nature Cell Biology.

[146]  Hong Sun,et al.  p27Kip1 ubiquitination and degradation is regulated by the SCFSkp2 complex through phosphorylated Thr187 in p27 , 1999, Current Biology.

[147]  R. Benarous,et al.  The F-box protein β-TrCP associates with phosphorylated β-catenin and regulates its activity in the cell , 1999, Current Biology.

[148]  R. Benarous,et al.  The F-box protein beta-TrCP associates with phosphorylated beta-catenin and regulates its activity in the cell. , 1999, Current biology : CB.

[149]  J. Erhardt,et al.  A Novel F Box Protein, NFB42, Is Highly Enriched in Neurons and Induces Growth Arrest* , 1998, The Journal of Biological Chemistry.

[150]  M. Mann,et al.  Identification of the receptor component of the IκBα–ubiquitin ligase , 1998, Nature.

[151]  J. Gervais,et al.  Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21(CIP1/WAF1) and cyclin D proteins. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[152]  Stephen J. Elledge,et al.  SKP1 Connects Cell Cycle Regulators to the Ubiquitin Proteolysis Machinery through a Novel Motif, the F-Box , 1996, Cell.

[153]  J. Pagano The Epstein‐Barr Virus and Nasopharyngeal Carcinoma , 1994, Cancer.