Metal Halide Perovskites as Mixed Electronic-Ionic Conductors: Challenges and Opportunities-From Hysteresis to Memristivity.

Metal halide perovskites are promising candidates for many classes of different optoelectronic devices. Apart from being a semiconductor, they additionally show ionic conductivity. It expresses itself in slow response times, reversible degradation, and hysteresis in the current-voltage characteristics of solar cells. This Perspective gives a condensed overview about experiments and theory on ion migration in metal halide perovskites focusing on its effects in solar cells. Apart from being a potential stability concern for photovoltaics, ion migration paired with the excellent optoelectronic properties of this material offers opportunities for novel devices such as optically controlled memristors and switchable diodes.

[1]  E. Mosconi,et al.  Interplay of Orientational Order and Electronic Structure in Methylammonium Lead Iodide: Implications for Solar Cell Operation , 2014 .

[2]  Martijn Kemerink,et al.  Modeling Anomalous Hysteresis in Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[3]  Mario Caironi,et al.  Ion Migration and the Role of Preconditioning Cycles in the Stabilization of the J–V Characteristics of Inverted Hybrid Perovskite Solar Cells , 2016 .

[4]  Yanfa Yan,et al.  Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber , 2014 .

[5]  Cesare Soci,et al.  Lead iodide perovskite light-emitting field-effect transistor , 2015, Nature Communications.

[6]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[7]  Chi Jung Kang,et al.  Resistive Switching Behavior in Organic–Inorganic Hybrid CH3NH3PbI3−xClx Perovskite for Resistive Random Access Memory Devices , 2015, Advanced materials.

[8]  David Cahen,et al.  Stability of CdTe/CdS thin-film solar cells , 2000 .

[9]  T. Peltola,et al.  Can slow-moving ions explain hysteresis in the current–voltage curves of perovskite solar cells? , 2016 .

[10]  Zhengguo Xiao,et al.  Light‐Induced Self‐Poling Effect on Organometal Trihalide Perovskite Solar Cells for Increased Device Efficiency and Stability , 2015 .

[11]  Ching-ping Wong,et al.  Thin Film Electrochemical Capacitors Based on Organolead Triiodide Perovskite , 2016 .

[12]  John Wang,et al.  Ferroelectricity of CH3NH3PbI3 Perovskite. , 2015, The journal of physical chemistry letters.

[13]  Adam Pockett,et al.  Measurement and modelling of dark current decay transients in perovskite solar cells , 2017 .

[14]  Ruixia Yang,et al.  Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells , 2016 .

[15]  Sung-Hoon Lee,et al.  The Role of Intrinsic Defects in Methylammonium Lead Iodide Perovskite. , 2014, The journal of physical chemistry letters.

[16]  S.-W. Cheong,et al.  Switchable Ferroelectric Diode and Photovoltaic Effect in BiFeO3 , 2009, Science.

[17]  Anders Hagfeldt,et al.  Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide , 2016 .

[18]  Eric T. Hoke,et al.  Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells , 2014 .

[19]  M. Green,et al.  Critical Role of Grain Boundaries for Ion Migration in Formamidinium and Methylammonium Lead Halide Perovskite Solar Cells , 2016 .

[20]  Jang‐Sik Lee,et al.  Flexible Hybrid Organic-Inorganic Perovskite Memory. , 2016, ACS nano.

[21]  Anders Hagfeldt,et al.  Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells , 2017 .

[22]  Cheng Li,et al.  An organic–inorganic hybrid perovskite logic gate for better computing , 2015 .

[23]  Nam-Gyu Park,et al.  Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer. , 2014, The journal of physical chemistry letters.

[24]  Qingfeng Dong,et al.  Giant switchable photovoltaic effect in organometal trihalide perovskite devices. , 2015, Nature materials.

[25]  Jenny Nelson,et al.  Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis , 2016, Nature communications.

[26]  H. Inaba,et al.  Structural consideration on the ionic conductivity of perovskite-type oxides , 1999 .

[27]  H. Snaith,et al.  Non-ferroelectric nature of the conductance hysteresis in CH3NH3PbI3 perovskite-based photovoltaic devices , 2015, 1504.05454.

[28]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[29]  Yongbo Yuan,et al.  Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells , 2014, Nature Communications.

[30]  K. Catchpole,et al.  Hysteresis phenomena in perovskite solar cells: the many and varied effects of ionic accumulation. , 2017, Physical chemistry chemical physics : PCCP.

[31]  Tatsumi Ishihara,et al.  Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor , 1994 .

[32]  Yongbo Yuan,et al.  Photovoltaic Switching Mechanism in Lateral Structure Hybrid Perovskite Solar Cells , 2015 .

[33]  Satyaprasad P. Senanayak,et al.  Understanding charge transport in lead iodide perovskite thin-film field-effect transistors , 2017, Science Advances.

[34]  M. Scarpulla,et al.  Voltage-Induced Transients in Methylammonium Lead Triiodide Probed by Dynamic Photoluminescence Spectroscopy , 2016 .

[35]  H. Iwahara Ionic Conduction in Perovskite-Type Compounds , 2009 .

[36]  Konrad Wojciechowski,et al.  Mapping Electric Field‐Induced Switchable Poling and Structural Degradation in Hybrid Lead Halide Perovskite Thin Films , 2015 .

[37]  A. Köhler,et al.  Iodine Migration and its Effect on Hysteresis in Perovskite Solar Cells , 2016, Advanced materials.

[38]  Trystan Watson,et al.  Observable Hysteresis at Low Temperature in “Hysteresis Free” Organic–Inorganic Lead Halide Perovskite Solar Cells , 2015 .

[39]  Claudine Katan,et al.  Light-activated photocurrent degradation and self-healing in perovskite solar cells , 2016, Nature Communications.

[40]  Miao Zhou,et al.  Flexible All-Inorganic Perovskite CsPbBr3 Nonvolatile Memory Device. , 2017, ACS applied materials & interfaces.

[41]  Aron Walsh,et al.  Ionic transport in hybrid lead iodide perovskite solar cells , 2015, Nature Communications.

[42]  Tae Kyu Ahn,et al.  Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency , 2015 .

[43]  Bo Chen,et al.  Impact of Capacitive Effect and Ion Migration on the Hysteretic Behavior of Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[44]  Yanhong Luo,et al.  Microscopic Charge Transport and Recombination Processes behind the Photoelectric Hysteresis in Perovskite Solar Cells. , 2016, Small.

[45]  Michael C. Heiber,et al.  Persistent photovoltage in methylammonium lead iodide perovskite solar cells , 2014, 1406.4276.

[46]  Zhengguo Xiao,et al.  Energy‐Efficient Hybrid Perovskite Memristors and Synaptic Devices , 2016 .

[47]  M. Grätzel,et al.  Working Principles of Perovskite Photodetectors: Analyzing the Interplay Between Photoconductivity and Voltage‐Driven Energy‐Level Alignment , 2015 .

[48]  M. Hoffmann,et al.  Ferroelectric domains in methylammonium lead iodide perovskite thin-films , 2017 .

[49]  Jinsong Huang,et al.  Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films , 2016 .

[50]  Peng Gao,et al.  Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. , 2014, ACS nano.

[51]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[52]  Michael Saliba,et al.  Inverted Current–Voltage Hysteresis in Mixed Perovskite Solar Cells: Polarization, Energy Barriers, and Defect Recombination , 2016 .

[53]  J. Bisquert,et al.  Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation , 2015 .

[54]  Wentao Xu,et al.  Organometal Halide Perovskite Artificial Synapses , 2016, Advanced materials.

[55]  S. Meloni,et al.  Ionic polarization-induced current–voltage hysteresis in CH3NH3PbX3 perovskite solar cells , 2016, Nature Communications.

[56]  Anders Hagfeldt,et al.  Unbroken Perovskite: Interplay of Morphology, Electro‐optical Properties, and Ionic Movement , 2016, Advanced materials.

[57]  Aron Walsh,et al.  Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells , 2014, 1405.5810.

[58]  E. Mosconi,et al.  Mobile Ions in Organohalide Perovskites: Interplay of Electronic Structure and Dynamics , 2016, Proceedings of the nanoGe Fall Meeting 2018.

[59]  Xin Cai,et al.  High-performance perovskite memristor based on methyl ammonium lead halides , 2016 .

[60]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[61]  Mohammad Khaja Nazeeruddin,et al.  Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field , 2015 .