Live-wire-based segmentation using similarities between corresponding image structures

A live-wire-based segmentation method that exploits similarities of corresponding object contours is presented. The method accelerates the segmentation process transferring anchor points of segmented reference contours to unsegmented target slices automatically. The target contours are created using the live-wire algorithm trained by features of the reference contours. An automatic contour correction improves the segmentation. Only few user interactions with an intuitive contour editor are necessary. The evaluation using intra- and interpatient transfer shows that 51-73% of interaction time can be saved compared to normal live-wire preserving the segmentation quality.

[1]  E Stindel,et al.  3D MR image analysis of the morphology of the rear foot: application to classification of bones. , 1999, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[2]  Du-Ming Tsai,et al.  Boundary-based corner detection using eigenvalues of covariance matrices , 1999, Pattern Recognit. Lett..

[3]  Jinsoo Cho,et al.  Cardiac segmentation by a velocity-aided active contour model , 2006, Comput. Medical Imaging Graph..

[4]  H Handels,et al.  Three-dimensional planning and simulation of hip operations and computer-assisted construction of endoprostheses in bone tumor surgery. , 2001, Computer aided surgery : official journal of the International Society for Computer Aided Surgery.

[5]  Scott T. Grafton,et al.  Automated image registration: I. General methods and intrasubject, intramodality validation. , 1998, Journal of computer assisted tomography.

[6]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[7]  Ghassan Hamarneh,et al.  3D live-wire-based semi-automatic segmentation of medical images , 2005, SPIE Medical Imaging.

[8]  Dirk Bartz,et al.  Live-Wire Revisited , 2005, Bildverarbeitung für die Medizin.

[9]  Akshay K. Singh,et al.  Deformable models in medical image analysis , 1996, Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis.

[10]  Heinz-Otto Peitgen,et al.  Efficient Semiautomatic Segmentation of 3D Objects in Medical Images , 2000, MICCAI.

[11]  Yo-Sung Ho,et al.  A new general method of 3D model generation for active shape image segmentation , 2006, SPIE Medical Imaging.

[12]  W. H. Peters,et al.  Improved digital image processing technique to investigate plastic zone formation in steel , 1986, Image Vis. Comput..

[13]  M C Gilardi,et al.  PET/CT and radiotherapy. , 2006, The quarterly journal of nuclear medicine and molecular imaging : official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR), [and] Section of the Society of....

[14]  Jayaram K. Udupa,et al.  Oriented active shape models , 2006, SPIE Medical Imaging.

[15]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[16]  Carla S. Williams,et al.  A visual language for image processing , 1990, Proceedings of the 1990 IEEE Workshop on Visual Languages.

[17]  Thomas Martin Deserno,et al.  Bildverarbeitung für die Medizin: Grundlagen, Modelle, Methoden, Anwendungen , 1997, Bildverarbeitung für die Medizin.

[18]  Rachid Deriche,et al.  Recursive filtering and edge tracking: two primary tools for 3D edge detection , 1991, Image Vis. Comput..

[19]  Jayaram K. Udupa,et al.  A 3D generalization of user-steered live-wire segmentation , 2000, Medical Image Anal..

[20]  H Handels,et al.  Computer-Assisted Analysis of 4D Cardiac MR Image Sequences after Myocardial Infarction , 2006, Methods of Information in Medicine.

[21]  Jayaram K. Udupa,et al.  Iterative live wire and live snake: new user-steered 3D image segmentation paradigms , 2006, SPIE Medical Imaging.

[22]  Hiroshi Iseki,et al.  Image-guided neurosurgery system integrating AR-based navigation and open-MRI monitoring , 2005, Computer aided surgery : official journal of the International Society for Computer Aided Surgery.

[23]  Andrew J Wheaton,et al.  Cartilage volume quantification via Live Wire segmentation. , 2004, Academic radiology.

[24]  Dong-Hwan Har,et al.  Technical Report on Semiautomatic Segmentation Using the Adobe Photoshop , 2005, Journal of Digital Imaging.

[25]  William A. Barrett,et al.  Interactive live-wire boundary extraction , 1997, Medical Image Anal..