Preprocessing Imprecise Points and Splitting Triangulations

Traditional algorithms in computational geometry assume that the input points are given precisely. In practice, data is usually imprecise, but information about the imprecision is often available. In this context, we investigate what the value of this information is. We show here how to preprocess a set of disjoint regions in the plane of total complexity $n$ in $O(n\log n)$ time so that if one point per set is specified with precise coordinates, a triangulation of the points can be computed in linear time. In our solution, we solve another problem which we believe to be of independent interest. Given a triangulation with red and blue vertices, we show how to compute a triangulation of only the blue vertices in linear time.

[1]  Frank Weller Stability of voronoi neighborship under perturbations of the sites , 1997, CCCG.

[2]  M Pocchiola,et al.  On polygonal covers , 1998 .

[3]  Andrzej Lingas,et al.  On computing Voronoi diagrams for sorted point sets , 1995, Int. J. Comput. Geom. Appl..

[4]  Yin-Feng Xu,et al.  On Constrained Minimum Pseudotriangulations , 2003, COCOON.

[5]  R. Seidel A Method for Proving Lower Bounds for Certain Geometric Problems , 1984 .

[6]  D. Salesin,et al.  Constructing strongly convex approximate hulls with inaccurate primitives , 1990, Algorithmica.

[7]  Bernard Chazelle,et al.  Splitting a Delaunay Triangulation in Linear Time , 2001, Algorithmica.

[8]  Abbas Edalat,et al.  Computability of Partial Delaunay Triangulation and Voronoi Diagram , 2002, CCA.

[9]  Azriel Rosenfeld,et al.  Fuzzy Geometry: An updated Overview , 1998, Inf. Sci..

[10]  Abbas Edalat,et al.  Computing Delaunay Triangulation with Imprecise Input Data , 2003, CCCG.

[11]  Maarten Löffler,et al.  Delaunay triangulation of imprecise points in linear time after preprocessing , 2010, Comput. Geom..

[12]  Xiaojun Shen,et al.  Covering convex sets with non-overlapping polygons , 1990, Discret. Math..

[13]  Joseph S. B. Mitchell,et al.  Triangulating input-constrained planar point sets , 2008, Inf. Process. Lett..

[14]  Michel Pocchiola,et al.  Pseudo-triangulations: theory and applications , 1996, SCG '96.

[15]  Maarten Löffler,et al.  Largest and Smallest Convex Hulls for Imprecise Points , 2010, Algorithmica.

[16]  Bernard Chazelle,et al.  Computing hereditary convex structures , 2009, SCG '09.

[17]  Maarten Löffler,et al.  Delaunay triangulations of imprecise pointsin linear time after preprocessing , 2008, SCG '08.

[18]  Timothy M. Chan Three problems about simple polygons , 2006, Comput. Geom..

[19]  Anthony P. Leclerc,et al.  Correct Delaunay Triangulation in the Presence of Inexact Inputs and Arithmetic , 2000, Reliab. Comput..

[20]  Jack Snoeyink,et al.  Almost-Delaunay simplices: nearest neighbor relations for imprecise points , 2004, SODA '04.

[21]  Maarten Löffler,et al.  Approximating largest convex hulls for imprecise points , 2007, J. Discrete Algorithms.

[22]  Ali Asghar Khanban,et al.  Basic algorithms in computational geometry with imprecise input , 2005 .

[23]  Maarten Löffler,et al.  Largest bounding box, smallest diameter, and related problems on imprecise points , 2007, Comput. Geom..

[24]  William S. Evans,et al.  Guaranteed Voronoi Diagrams of Uncertain Sites , 2008, CCCG.

[25]  Francis Y. L. Chin,et al.  Finding the Constrained Delaunay Triangulation and Constrained Voronoi Diagram of a Simple Polygon in Linear Time , 1999, SIAM J. Comput..

[26]  Manuel Abellanas,et al.  Structural Tolerance and Delaunay Triangulation , 1999, Inf. Process. Lett..