Immersion-Based Observer Design

In this chapter we present immersion transformations of nonlinear systems for observer synthesis. A transformation through immersion is a generalization of an equivalence transformation to the extent that the dimension of the state space is not necessarily preserved. The immersion of a system for estimation purposes involves in fact the immersion (in the differential geometry sense) of the state space into a space of larger dimension, leading to a dynamical extension of the system.

[1]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[2]  D. Luenberger Observing the State of a Linear System , 1964, IEEE Transactions on Military Electronics.

[3]  W. Boothby An introduction to differentiable manifolds and Riemannian geometry , 1975 .

[4]  A. Krener,et al.  Nonlinear controllability and observability , 1977 .

[5]  M. Fliess,et al.  Fonctionnelles causales non linaires et indtermines non commutatives , 1981 .

[6]  Alberto Isidori,et al.  Feedback Control of Linear and Nonlinear Systems , 1982 .

[7]  Michel Fliess,et al.  Finite-dimensional observation-spaces for non-linear systems , 1982 .

[8]  M. Fliess,et al.  A Finiteness Criterion for Nonlinear Input–Output Differential Systems , 1983 .

[9]  Arthur J. Krener,et al.  Linearization by output injection and nonlinear observers , 1983 .

[10]  A. Krener,et al.  Nonlinear observers with linearizable error dynamics , 1985 .

[11]  A. Isidori Nonlinear Control Systems , 1985 .

[12]  J. Lévine,et al.  Nonlinear system immersion, observers and finite-dimensional filters , 1986 .

[13]  J. Gauthier,et al.  Observability and observers for non-linear systems , 1986, 1986 25th IEEE Conference on Decision and Control.

[14]  H. Keller Non-linear observer design by transformation into a generalized observer canonical form , 1987 .

[15]  J. Gauthier,et al.  Local and global immersion into linear systems up to output injection , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[16]  H. Hammouri,et al.  Observer synthesis for state-affine systems , 1990, 29th IEEE Conference on Decision and Control.

[17]  H. Hammouri,et al.  Some Results about Nonlinear Systems Equivalence for the Observer Synthesis , 1991 .

[18]  Hassan Hammouri,et al.  On Systems Equivalence and Observer Synthesis , 1991 .

[19]  G. Conte,et al.  New Trends in Systems Theory , 1991 .

[20]  J. Gauthier,et al.  A simple observer for nonlinear systems applications to bioreactors , 1992 .

[21]  Hassan Hammouri,et al.  Observer Synthesis for a Class of Nonlinear Control Systems , 1996, Eur. J. Control.

[22]  G. Besancon,et al.  On characterizing classes of observer forms for nonlinear systems , 1997, 1997 European Control Conference (ECC).

[23]  G. Besancon,et al.  Further results on high gain observers for nonlinear systems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[24]  Claudio De Persis,et al.  Proceedings of the 38th IEEE conference on decision and control , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[25]  Philippe Jouan Immersion of Nonlinear Systems into Linear Systems Modulo Output Injection , 2003, SIAM J. Control. Optim..

[26]  J. Seo,et al.  Immersion of Non-Linear Systems into Linear Systems up to Output Injection: Characteristic Equation Approach , 2004 .

[27]  Gildas Besançon,et al.  Observer Scheme for State and Parameter Estimation in Asynchronous Motors with Application to Speed Control , 2006, Eur. J. Control.

[28]  G. Besancon,et al.  Observer design for state and parameter estimation in induction motors with simulation and experimental validation , 2006, IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics.

[29]  Gildas Besançon,et al.  An Immersion-Based Observer Design for Rank-Observable Nonlinear Systems , 2007, IEEE Transactions on Automatic Control.