An Integrated Ontology-Based Approach for Patent Classification in Medical Engineering

Medical engineering (ME) is an interdisciplinary domain with short innovation cycles. Usually, researchers from several fields cooperate in ME research projects. To support the identification of suitable partners for a project, we present an integrated approach for patent classification combining ideas from topic modeling, ontology modeling & matching, bibliometric analysis, and data integration. First evaluation results show that the use of semantic technologies in patent classification can indeed increase the quality of the results.

[1]  Weiguo Fan,et al.  ExpertRank: A topic-aware expert finding algorithm for online knowledge communities , 2013, Decis. Support Syst..

[2]  Jevin D. West,et al.  Visualizing Scholarly Publications and Citations to Enhance Author Profiles , 2017, WWW.

[3]  Teodor Gabriel Crainic,et al.  Collaboration partner selection for city logistics planning under municipal freight regulations , 2016 .

[4]  Sandra Geisler,et al.  Constance: An Intelligent Data Lake System , 2016, SIGMOD Conference.

[5]  Yuen-Hsien Tseng,et al.  Text mining techniques for patent analysis , 2007, Inf. Process. Manag..

[6]  Byungun Yoon,et al.  A text-mining-based patent network: Analytical tool for high-technology trend , 2004 .

[7]  Kurt Hornik,et al.  Text Mining Infrastructure in R , 2008 .

[8]  Cosmin Stroe,et al.  AgreementMaker: Efficient Matching for Large Real-World Schemas and Ontologies , 2009, Proc. VLDB Endow..

[9]  David M. Blei,et al.  Probabilistic topic models , 2012, Commun. ACM.

[10]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[11]  Yiannis Kompatsiaris,et al.  Towards content-oriented patent document processing , 2008 .

[12]  Alfred Kobsa,et al.  Expert-Finding Systems for Organizations: Problem and Domain Analysis and the DEMOIR Approach , 2003, J. Organ. Comput. Electron. Commer..

[13]  Thomas L. Griffiths,et al.  Probabilistic Topic Models , 2007 .

[14]  Ahmad A. Kardan,et al.  A novel method for expert finding in online communities based on concept map and PageRank , 2015, Human-centric Computing and Information Sciences.

[15]  Fulvio Corno,et al.  Review of the state-of-the-art in patent information and forthcoming evolutions in intelligent patent informatics , 2010 .

[16]  M. de Rijke,et al.  Determining Expert Profiles (With an Application to Expert Finding) , 2007, IJCAI.

[17]  V. Valli Kumari,et al.  Expert Finding System using Latent Effort Ranking in Academic Social Networks , 2015 .

[18]  Balqies Sadoun,et al.  The BAU GIS system using open source mapwindow , 2015, Human-centric Computing and Information Sciences.

[19]  David J. Barnes,et al.  A literature review of decision-making models and approaches for partner selection in agile supply chains , 2011 .

[20]  Tao Li,et al.  Patent Mining: A Survey , 2015, SKDD.

[21]  Sandra Geisler,et al.  An Ontology-based Collaboration Recommender System using Patents , 2015, KEOD.

[22]  Bo Gao,et al.  PatentMiner: topic-driven patent analysis and mining , 2012, KDD.

[23]  M. F. Porter,et al.  An algorithm for suffix stripping , 1997 .

[24]  John D. Lafferty,et al.  A correlated topic model of Science , 2007, 0708.3601.

[25]  Kurt Hornik,et al.  topicmodels : An R Package for Fitting Topic Models , 2016 .

[26]  Amy J. C. Trappey,et al.  A Fuzzy Ontological Knowledge Document Clustering Methodology , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[27]  Mary Ellen Mogee,et al.  Patent co-citation analysis of Eli Lilly & Co. patents , 1999 .

[28]  Isabel F. Cruz,et al.  AgreementMakerLight results for OAEI 2013 , 2013, OM.